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1. Introduction 
The overall research focuses on the development of an Interactive Evolutionary Design System 
(IEDS) [Parmee 2002] which integrates machine-based evaluation of engineering criteria and rule-
based aesthetic criteria with the designer’s subjective aesthetic evaluation of design solutions. The 
research described in the paper relates to user-centric intelligent design systems and creativity in 
design. While research relating to artificial design environments is evident in the literature [Gero 
2002], [Bentley 1999] there is little evidence of the integration of user evaluation, evolutionary search 
and exploration and machine learning. Furthermore, integration of aesthetic criteria within computer-
based design has been limited to the development of theoretical models with little evidence of 
application based research [Moore et al. 1996; Saunders 2001]. The IEDS in this case addresses the 
conceptual design of  bridges. For a more detailed description of the system as illustrated in Figure 1, 
the reader is directed to Machwe et. al. [2005]. The research decribed in the following sections 
concentrates upon the machine learning sub-system . 

 
Figure 1. Interactive Bridge Design System 

The designer interacts with the evolutionary process through the subjective evaluation of those designs 
considered high performance in terms of the machine-based criteria. The system displays images of 
the top N% (where N is preset by the designer) of designs based on engineering analysis, materials 
usage and simple rule-based aesthetic analysis. The user then assigns a user-defined fitness value to 
each design (User-assigned fitness: Ufit). The main purpose of the Machine Learning Sub-system is 
the on-line assimilation of the designer’s subjective aesthetic preferences. This addresses a major 
problem in interactive evolutionary design systems relating to user fatigue caused by the evaluation of 
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excessive numbers of solutions. The intention is that, as the generations progress, the system reduces 
its dependence on human interaction and increasingly produces aesthetically pleasing solutions based 
upon the assimilated user preferences. This would result in a reducing degree of user-interaction and, 
in later generations, a completely machine-based process once user preferences have been adequately 
learned by the system.  

2. Background 
The nature of the interaction in the IEDS allows the use of supervised learning. The user ranking of 
generated solutions provides the required inputs and outputs of an online learning system [Mitchell 
1997], [Bigus and Bigus 2004].  In this paper we look at three techniques implemented within the 
IEDS namely: Fuzzy rule based learning systems, Radial Basis functions (RBF) and finally Case 
based reasoning (CBR). 
Design representation presented an initial problem in the research. Various authors [e.g. Mitchell 
1997; Kolodner 1993] point out that the learning ability of any algorithm is only as good as the 
representation of the information to be learned. Thus, the essentially pictorial design has to be 
represented to suit various machine learning techniques such as back propagation neural networks and 
fuzzy rule based systems. If the representation is too rich then the machine learning system would be 
overloaded with the instances to be learned. If the representation is too lean then the system could 
miss out small but important differences between designs. 

 
Figure 2. Representing Bridge Designs within the Machine Learning Sub-system 

3. Representation of solutions  
As fully described in Machwe et al [2005], the simple bridge design is basically divided into two 
separate collections namely the Span Element collection (containing elements forming the span of the 
bridge) and the Support Element collection (containing elements forming the support of the bridge). In 
the case of a free span bridge the Support Element collection will be empty. Figure 3 further clarifies 
the idea of using an object based representation. 

 
Figure 3. Details of the object based representation 

Each Element is basically a rectangle with properties as shown in Figure 3. An Element can either be 
part of a supporting element collection or a span element collection. Since initially we are looking at a 
simple beam span bridge with and without supports and a bridge with angled beam span sections there 
are only two basic types of Elements required. These are the angled section Element (to be used as a 



METHODS AND TOOLS IN DESIGN PRACTICE 285

span element only) and a simple rectangle Element which can be used as both spanning and 
supporting element. To extend the design into the third dimension all elements have a constant width. 
Thus only the profile of the bridge is relevant. 

 
Figure 4. Two classes of bridges: Simply supported and Angled section spans 

There are three kinds of bridges possible, two of which can be seen in Figure 4. The third type is 
simply supported at either end with no columns. Each type is treated as a separate class. Thus at the 
first level, this classification of designs helps the machine learning system categorise test cases whilst 
during the matching process classes ensure the comparing of like-with-like. 
For the fuzzy rule based system each design class is represented by a set of fuzzy variables. Thus each 
class has its own fuzzy variable based representation within the machine learning sub-system. In case 
of simply supported spans the following fuzzy variables are used to represent the design: 
 
Avgerage Span Thickness  
Standard. Deviation of Span Thickness  
Average Distance between supports 
Standard. Deviation of distance between supports 
Avgerage Thickness of supports    
Standard Deviation of thickness of supports 
 
For the angled section we use the following fuzzy variables to specify the aesthetic model: 
 
Peak: Left, Central, Right 
Difference in Span Thickness (Delta-Thickness) 
Average Thickness 
Column Thickness 
 
The User assigned fitness (Ufit) fuzzy variable is the result of the rule. Thus the numeric fitness value 
assigned by the user to a design is translated into a fuzzy value and added as the result of that 
particular rule (generated from the design). A typical rule for an angled section bridge would look 
something like:  
 
IF peak = Left AND delta-thickness = Right AND avg. thickness = High AND col. thickness = Low 
THEN ufit = Low 
 
In the case of the RBF and Case based reasoning implementation a much more flexible representation 
has been utilised. The solutions are simply stored but, at the time of retrieval in CBR and during 
training in RBF, each solution is decomposed using geometrical techniques rather than the 
characteristic-based variable approach utilised in the fuzzy inference method. In the case of the angled 
span bridge the solution is decomposed by taking the geometrical properties of the left and right span 
element including length and thickness and the thickeness and horizontal (x) position of the support. 
In the case of the supported span the span section is divided into ten equal parts and the average 
thickness calculated. This gives an approximate profile of the span section. The greater the number of 
parts used the higher the resolution and more computationally expensive the retrieval becomes. The 
supports are again represented by their thickness and horizontal (x) positions. 



 METHODS AND TOOLS IN DESIGN PRACTICE 286  

 
Figure 5. Structure of Test Data 

For an RBF network we can assume the following formulation of the problem: 

F(x) = Ufit (1) 

Where x is the vector containing the average thickness of the ten sections that the span is divided into 
and F is the RBF approximated function [Orr 1996]. The user supplied ranking (Ufit) and the 
corresponding design gives the training data for the RBF. The basic storage structure to store data for 
RBF and CBR systems is shown in Figure 5. 

4. Fuzzy Rule Based Learning System 
The fuzzy rule based system uses the Information Gain heuristic to build a decision tree from the rules 
in the rule base. The decision tree is then used to evaluate new examples. The Information Gain 
heuristic as given by Shannon and Weaver [Bigus and Bigus 2004] is given by the following set of 
equations: 
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Here p and n give the total number of positive and negative examples (rules with positive or negative 
results) in the data set to be used for decision tree creation. In case we want to find the information 
gain for attribute A (or variable A) which takes m different values (say) we just calculate the 
Remainder of A (where pi and ni give positive and negative examples with A taking the ith value out 
of the possible m). The Gain always takes a value between 0 and 1. 

4.1 Results 
The information gain was calculated for each variable in both the models using a set of generated 
rules. 
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Tables 1a and 1b Information Gain data for Angled and Simply supported bridges 
Angled Beam Bridges 

Variable Name Gain 
Skew 0.218 

Delta-Thickness of Two span elements 0.170 
Average Thickness of Span 0.255 

Column Thickness 0.334 

 
Simply Supported Beam Bridges 

Variable Name Gain 
Std. Dev. Of Span Thickness 0.077 

Avg. Distance between Supports 0.009 
Std. Dev. Of distance between supports 0.029 

Average Thickness of columns 0.030 
Std. Dev. Of thickness of columns 0.027 

 
A positive example is a rule where the Ufit value was greater than five and a negative example when 
the Ufit value is less than or equal to five.Rules are collected during a run and analysed offline for the 
information gain of each variable. The information gain data for a standard run is given in Table 1a 
and 1b, from which we can see that information gain is low when we use fuzzy variables to 
decompose the design into a set of rules.  

5. Radial Basis Functions 
Radial basis functions are used for supervised learning. An RBF network consists of an input layer 
fully connected to a hidden RBF layer which is made up of h number of hidden units. The output of 
the hidden layer is added using weighted sum and given to the output layer (consisting of a single 
unit). Each hidden unit represents a radial basis function which is characterised by a center (c) and 
radius (r) of coverage (if using Gaussian functions as the radial function).  
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To completely define an RBF we need to first find the optimal number of hidden units with center and 
radius defined and the weight vector for the hidden units. Once the centers and radii are defined the 
weight vector can be obtained using the normal equation. The RBF once setup can be tested using a 
validation technique such as Generalised Cross Validation (GCV).  
There are multiple techniques for setting up an RBF such as backward elimination and forward 
selection. Forward selection was used in this study since it offers many advantages including not 
requiring the number of hidden units to be fixed in advance and being computationally efficient [Orr 
1996].  
The hidden units are initialised with random centers and radii for each run and added one by one. 
After each addition the GCV value is calculated and recorded. As each hidden unit is added the sum 
square error is reduced but there is a danger of overfit taking place. The GCV value on the other hand 
stops decreasing after a certain number of units are added and starts increasing which signifies 
overfitting. 
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5.1 Results with RBF 

Table 2. Data from Radial Basis Functions using Forward Selection 
Total Number of Cases (C) ~ 700 CASE SIZE  

 C C/2 C/3 C/4 
Minimum Number of Functions 51 24 19 29 
Maximum Number of Functions 53 57 42 38 

Minimum GCV 11.58 24.43 40.613 48.21 
Maximum GCV 11.88 25.425 42.892 52.74 

Standard Deviation (Number of Functions) 1.15 15.59 9.47 3.49 
Standard Deviation (GCV) 0.16 0.45 0.99 1.8 

 
When testing with radial basis functions a total of 700 design cases were collected over multiple 
evolutionary runs with the same user. The maximum and minimum values for error are shown for 
different test case sizes (when using Forward Selection) in Table 2. As the test case size is increased 
the error reduces and the number of hidden units required converges to approximiatly 50. We also see 
that with increasing test case size the standard deviation of error obtained from multiple runs also 
reduces. In case of small test case size (C/3 ~ 233 cases and C/4 ~ 175 cases) the minimum error is 
quite large where as with a case size of around 350 cases the error is halved and with case size of 
around 700 cases the error is halved again. The results suggest that the required level of on-line 
learning is not achievable and that the RBF is more suited to an off-line approach since the RBF based 
learning system requires a large number of cases to achieve low error rates. The typical case library 
size for an RBF would be around 350 cases (see Table 2.). For a user ranking ten solutions per 
generation it would take atleast thirty five generations to achieve low error rates. The cognitive load of 
continuously evaluating ten solutions per generation for thirty five generations defeats the purpose of 
having a learning system to assist the designer. 

6. Case Based Reasoning 
Due to the problem of representation Case Based Reasoning (CBR) is one of the most promising 
techniques [Mitchell, 1997]. A major advantage of using CBR is that the design information can be 
stored as it stands without using any other representations that can take away essential information 
[Kolodner 1993]. The retrieval part of the CBR uses nearest neighbour distance metrics to measure the 
difference between the new design and the designs in the case base. The design closest to the new 
design has its user assigned fitness (Ufit) awarded to the new design (Figure 6). 

 
Figure 6. The Case Based Reasoning system integrated with the IEDS 
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6.1 Results with CBR 
The CBR learning is online and cases are not carried over from past runs. Initially the case library is 
empty. After the first generation of user evaluations the case library starts to fill. Solutions not 
examined by the user are assigned a zero fitness. Once there are a number of cases in the case library 
the machine learning system starts ranking solutions and the user has the option to change the machine 
assigned rank. The testing carried out consisted of recording the number of changes the user makes to 
the machine assigned rank in each generation in each of fifty seperate runs of variable length. The 
values then were grouped by generation number and then averaged.  
If the learning system is operating successfully then the number of changes made by the user would 
decrease rapidly with each generation as the machine assimilates user preference. This is assisted in 
part by the convergence of the population i.e. as the population converges it improves the resolution 
around the solutions initially preferred by the user. It must be kept in mind that without a machine 
learning sub-system the user would have to rank all the N% solutions shown to him consistently after 
every generation to ensure that the population converges to the desired designs. 

 
Figure 7. Number of user made changes to machine assigned fitness during different generations 

Thus we can see that the user interaction decreases as the generations proceed.  The user interaction 
required drops from the average of around 9.2 changes out of 10 solutions to circa 0.5 changes out of 
10 solutions in generation six and drops to zero by generation fourteen. This illustrates that the CBR 
sub-system is operating satisfactorily within the IEDS (Figure 7).   

7. Conclusion 
We can draw several important conclusions from the tests carried out using the different techniques. 
The results confirm the findings of other researchers i.e. that even in the case of machine learning, 
representation plays an important role.. From the failure of fuzzy rule based systems we can conclude 
that when complex design properties have to be extracted it is difficult to do so using a simple set of 
variables. Perhaps a more comprehensive fuzzy model might lead to better results but the loss of 
information during decomposition would always remain a problem as can be seen from the success of 
the geometrical representation. 
From the experiments with RBF we can see that RBF, with a little more sophisticated training 
technique, could provide an ideal machine learning sub-system in the offline, profile based interaction 
but for online learning, using a smaller training data set, the error between expected and actual output 
is too large.  
The CBR approach does seem to provide a way forward in the case of online learning. Figure 7 
provides us with insight into the performance of the learning system and also raises an interesting 
question. If we examine the graph between generations nine and eleven we find a slight increase in 



 METHODS AND TOOLS IN DESIGN PRACTICE 290  

required user interaction. Similarly between generations twelve and fourteen we find another (lower) 
rise. A possible reason for this could be a mid-course correction introduced during certain runs by the 
user. Such a mid-course correction can be caused by two designs being highly similar and yet having 
different past user assigned fitness values. This kind of ‘confusion’ can be attributed to the Euclidian 
distance measure being used to retrieve the cases. 
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