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1. Introduction 
This paper deals with composing algorithms of engineering calculations based on constraint 
management. The constraints are depicted in form of a Boolean matrix called an occurence matrix. 
The simplicity of occurence matrices makes them particularly suited for computer implementation in 
contrast to graphs or other ways of representation [Warfield 1973]. 
In calculation of mechanical elements and assemblies the constraints form sparse matrices, which 
should be reordered and decomposed. Several researchers have addressed the problem of selecting 
input variables and solving the resulting set of equations. Steward [Steward 1965] was one of the 
earliest investigators who analyzed the structure of simultaneous equations. Friedman and Leondes 
[Friedman and Leondes 1969] presented a constraint theory based on mathematical operations. 
Serrano and Gossard [Serrano and Gossard 1988] contributed to constraint management in mechanical 
computer-aided design. Kusiak and Cheng [Kusiak and Cheng 1990] presented algorithms for 
clustering the matrices for decomposition. Eppinger [Eppinger 1991] applied structural matrices to 
design task organization. Aggraval et al. [Aggraval et al. 1993] presented constraint management 
algorithms based on the decomposition of the occurence matrices. Recently Babirecki [Babirecki 
2005] proposed similar approach to rationalization engineering calculations based on operations on the 
occurrence matrices. 
An engineering calculation task is defined by a valid set of constraints and input variables such that 
the remaining unknown variables can be calculated. Constraints mean here generalized relations 
between variables. The number of theoretically possible tasks depends on the number of constraints 
and the number of variables. If these numbers are equal to each other then the matrix is square and 
there is only one possible task. Usually in the original occurrence matrix there are more variables than 
constraints. Thus, if the matrix is rectangular of (m x n) dimension, with (n – m) > 0, then (n – m) 
variables must be specified as input. For a given number of constraints the number of possible tasks 
increases very fast with the number of variables. For example, for 5 constraints and 6 variables there 
are 6 different tasks possible, for 7 variables there are 15 tasks, and for 8 variables there exist 
potentially as many as 56 tasks. In reality, the number of feasible task cases is smaller because certain 
combinations of variables do not make semantic sense. 

2. Association the system of constraints with an occurrence matrix 
The occurrence matrix R for a system of n constraints with v variables is an n x v matrix [sij] where sij 
is a mark if variable vj appears in relation ri or is blank otherwise. So the [sij] matrix maps the set of 
variables onto the set of relations. The structure of a system of relations takes into consideration only 
which variables occur in which relations, but not how they appear. In this paper, on the contrary to the 
cited references, the occurrence matrix may represent any kind of relations: equations, inequalities, 
tabular data, and graphs, either linear or non-linear ones.  
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Fig. 1 shows a system of relations and the corresponding structural matrix. Relations are written in a 
normalized neutral form i.e. without distinction between output (dependent) and input (independent) 
variables. This is called the neutral matrix. 
 

a) b) 
F1(za, zc, ze)=0 
F2(zb, zf)=0 
F3(ze, zf, zg)=0 
F4(za, zd)=0 
F5(zb, zd)=0 
F6(zb, zf)=0 
F7(zc, ze, zg)=0 

za zb zc zd ze zf zg

F1 x x x
F2 x x
F3 x x x
F4 x x
F5 x x
F6 x x
F7 x x x  

Figure 1. a) System of relations b) Corresponding occurrence matrix 

Formulation the neutral occurence matrix is the first step. The original matrix as shown in Fig. 1 can 
be reorder to a more suitable form. This is the subject of the next section. 

3. The analysis and decomposition of occurrence matrices 
The next step in the algorithm design is to rearrange the matrix to a set of sub-matrices. The process of 
decomposition begins with selecting any row of the matrix and drawing vertical lines through each 
mark in this row. Then rows with marks appearing in the vertical lines are drawing and so forth until 
no once-crossed marks are left.  Now the twice-crossed marks are rearranged to form the sub-matrix 
(block). Next, all the twice-crossed marks are removed and the procedure is repeated until no marked 
cells are left. An example of the procedure is shown in Fig. 2. 

 
Figure 2. Decomposition of the occurence matrix: a) b) and c) - subsequent iterations,  

d) -resulting matrix decomposed into three independent blocks 

It is not always possible to decompose a matrix into a set of independent blocks. In general, three 
structures can appear as shown in Fig. 3. 
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Figure 3. Three possible forms of the occurence matrix after reordering: a) the matrix fully decoupled 
into independent blocks, b) the matrix partially decoupled  into blocks with overlapping variables, c) 

the matrix partially decoupled into blocks with overlapping constraints 

The three blocks in Fig. 3a represent three independent groups of constraints which can be considered 
and solved simultaneously. The matrix shown in Fig. 3b is divided into two sub-matrices linked by the 
overlapping variables shown in the right-hand block. Because of these variables the sub-matrices are 
interdependent and can not be  considered simultaneously unless an additional action is provided.  
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The matrix shown in Fig. 3c has also two independent blocks of constraints but there are also 
constraints out of the blocks shown at the bottom of the matrix. The solution of these blocks depends 
on the solution of the bottom constraints. To deal with overlapping constraints a semantic insight is 
required into the nature of the constraints.  
For not fully decomposable matrices like in Figs. 3b and c a number of actions can be taken. The 
simplest one is to identify the overlapping variables or overlapping constraints and remove them from 
the matrix. For example, one can remove from the matrix the variable that has the greatest  value of 
the dependence index id. This index is calculated for a chosen variable as a number of variables 
appearing in constraints which contain the variable. After having id calculated for all the variables, the 
variable of the highest index is removed out of the matrix and then the decomposition process 
proceeds. It means that the removed variable should become an input variable, i.e. the independent 
one.  Kusiak and Cheng proposed a branch-and-bound algorithm to deal with such kind of matrices. 

4. The derivation of calculation algorithms from occurrence matrices 
The search for a calculation algorithm from the occurence matrix begins with the determination of 
input variables. It changes the neutral matrix into the directed one. The input variables can be 
introduced one at a time or at once. It is convenient to separate the specified input variables from the 
original matrix as it is shown in Fig. 6. When the inputs are determined one after the other the 
occurrence matrix must be updated step by step by removing columns with the specified variables. 
After each operation the resulting matrix should be analyzed and reordered. If all input variables are 
introduced at once then these intermediate operations are not performed. The first alternative may give 
better insight into systemic relations of the matrix but in the real use designers often prefer the second 
one. In the following only this approach is presented. 

 
Figure 4. Process of constructing of an calculation algorithm 

If the occurrence matrix has been fully decomposed into blocks then for each block exists a separate 
algorithm of calculations. The process of algorithm construction starts with summing  the entries in 
each row of the matrix to form a column for the row indexes sw. The row index indicates how many 
dependent (output) variables must be find in order to satisfy the constraint in a row. If the row index is 
equal to 1 then the constraint can be solved independently. Solving this constraint means that one 
operation of the being constructed algorithm has been determined. Then the occurrence matrix is 
updated and the procedure continues. If there is no one row with only one entry, this implies that a 
procedure of identifying simultaneous equations should be performed. This procedure continues  until 
the sw column is identically equal to 0 i.e. there are no more dependent variables remaining, which 
means that the algorithm is complete. 
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Inequalities require a special attention. They can not be used for identification of the value of a 
particular dependent variable. They must be checked as soon as possible or convert into equalities.  
In an example shown in Fig. 4 the original matrix and all the subsequent ones contain rows with at 
least one dependent variable, which makes the algorithm easy to find.  In the original matrix there are 
four rows with sw index equal to one. After crossing out the rows with these constraints and the 
column with just calculated variables the subsequent matrix appears, in which there are six constraints 
and one among them has again one unknown variable. Thus the next matrix results and the operation 
repeats. The inscriptions in the Fig. 4 denote constraints that are solved and resulting variables. The 
resulting algorithm  can be drawn in any useful form e.g. a graph, a flow-chart or other. This example 
was taken from a jackscrew calculation [Babirecki 2005]. 

5. Example of application: setting up an algorithm for helical spring calculation 
For helical springs used in ordinary applications 24 constraints of various kind have been selected 
[Branowski 1997], as shown in Table 1.  In these constraints 33 variables appear. If we assume that 
the constraints specified in Table 1 represent the basic body of formal knowledge of helical 
compression springs then they can be used for solving any problem of the spring analysis and/or 
synthesis. The variety of problems that may occur in practice is enormous. 
The relevant variables for the helical spring are: 
B - spring coefficient (usually B = 0,5 for compression springs); D - mean coil diameter; Demax - 
maximal outside spring diameter; ΔDe - diameter enlargement of compressed spring; Fc - theoretical 
load of blocked spring; F2 - spring load; ΔF2 - load deviation; G - modulus of elasticity;  Lc - length of 
the blocked spring; L0 - free spring length; OdF2 - relative load deviation; R - spring rate constant; Rk -
corrected stiffness (averaged); Rm - tensile strength; RELdop - allowable relaxation index;  Sa -  
minimal clearance between coils (total); T - spring working temperature; d - wire diameter; Δd - wire 
diameter deviation; n - number of active coils; nt - total number of coils;  sc - blocking deflection; s2 - 
spring deflection; w - spring index; α, β - material constants; τ2 - shearing stress; τc - shear stress of 
the blocked spring.  
The occurrence matrix  shown in Fig. 5 encompasses the constraints in rows in original order. The 
first left column in the matrix denotes a constraint type; r indicates equation, n – inequality, t – a 
constraint in form of table or chart. The second left column shows constraint numbers. The second 
upper row designates symbols of variables which occur in the constraints, while the first one denotes 
the type of a variable;  f- indicates the functional variable, g – geometric, m – material. x1, x2,…. x33 
are symbols for relevant variables. If a variable occurs in a constraint then the relevant cell is marked.  

f f f f f g f f g g m m m g m g g f g g g g g g g g f f f f f f f

D
F 2 F 2
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dF

2

F n R S 2 R
m

in

R
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ax d w a b B D G n n t R
k

S a D
d L c s n L 0 D
D

e

D
m

ax

S c F c t c R
m t 2 R

E
L

T

R
E

L d
op

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33

r f1 x x x
r f2 x x
r f3 x x x
r f4 x x x x
r f5 x x x x
n f6 x x x x x x
r f7 x x x
r f8 x x x x x
r f9 x x
r f10 x x x x x
r f11 x x x x
n f12 x x x x
r f13 x x x
r f14 x x x x
r f15 x x x x x
r f16 x x x x x
r f17 x x x
r f18 x x x
r f19 x x x x
r f20 x x
n f21 x x
r f22 x x x x
t f23 x x x x
n f24 x x  

Figure 5. Neutral occurrence matrix for helical spring 

The original neutral matrix could be ordered and blocked in order to decompose it to smaller sub-
matrices or this operation can be executed after removing the input variables.  
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f f f f f g g g g f g g g g g g g f f f f f f g g m m m m g f f f
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Figure 6. The directed occurrence matrix for a set of determined variables shown on the right 

An example of the directed matrix is shown in Fig. 6 where input variables are separated on the right. 
These are named as WE. The task consists in finding out the wire diameter d, total number of coils nt, 
mean coil diameter D, and free spring length L0. These are the main output variables named as WY. 
All other variables which should also be evaluated are regarded as intermediate and named as PO. 
Now in the occurrence matrix there are only 22 variables to evaluate but still 24 constraints with four 
inequalities amongst them. Since inequalities can not be used for calculation of variables then two of 
them should be turned into equations. The other two inequalities, designated rs, must be satisfied as 
they are. 
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Figure 7. The decomposed occurrence matrix for the helical spring calculation 

After re-arranging rows and columns in the matrix a new its form is obtained, consisting of two 
independent blocks. It is shown in Fig. 7. This matrix has been used to found a rational calculation 
algorithm. Babirecki has shown that four different algorithms can be set up. One is shown in Table 1. 
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Table 1. Calculation algorithm for helical spring 
Calc. order Constraints Evaluated variables 

 From relation Calculate 

1 ),,( 2221 FOdFFff Δ=  [ ]
100

2
221

FOdFFx =Δ=  

2 ),,,( min2224 RFFsff Δ=  
2

22
min7 s

FFRx Δ−==  
B

LO
C

K
 1

 

3 ),,,( max2225 RFFsff Δ=  
2

22
max8 s

FFRx Δ+==  

1 ),( 22 FFff n=  24 15,1 FFx n ==  

2 ),,( 223 FsRff =  
2

2
5 s

FRx ==  

3 ),,(13 nn FRsff =  
R
Fsx n

n ==22
 

4 ),,,,,(6 BwFdff n βα=  β

απ
−

⎟
⎠
⎞

⎜
⎝
⎛≥=

2
1

9
8

B
wFdx n  - turned into equation 

5 ),,(7 wDdff =  wdDx ==14  

6 ),,,,(8 nRwGdff =  
Rw

Gdnx 316 8
==  

7 ),(20 dRff m=  ( ) ( )[ ]ddRx m log902470log82022205,029 −+−==  

8 ),(9 nnff t=  217 +== nnx t  

9 ),,,,(10 nRDGdff k=  
nD

GdRx k 3

4

18 8
==  

10 ),,,(11 nDSdff a=  nd
d

DSx a ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+== 1,00015,0

2

19
 

11 ),,,( 2222 τdDFff =  3
2

230
8

d
DFx

π
τ ==  

12 ),,,( 223 τdDRELff =  ),,( 231 τdTfRELx ==  

13 ),(24 dopRELRELff =  dopRELREL ≤ - used for examination only 

14 ),,,(12 Ct Ldndff Δ=  )(21 ddnLx tC Δ+≤=  - turned into equation 

15 ),,,( 014 nac sSLLff =  nac sSLLx ++== 023  

16 ),,,,( 015 eDDndLff Δ=  

D

dd
n

dL
n

dL

Dx e

20
2

0

24

2,08,0
1,0

−⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛ −

=Δ=  

17 ),,( 017 cc sLLff =  cc LLsx −== 026  

18 ),,,( max16 dDDDff ee Δ=  ee DdDDx Δ++== max25  

19 ),,(18 cc sRFff =  cc RsFx ==27  

20 ),,,(19 cc dDFff τ=  
328

8
d

DFx c
c π

τ ==  

B
LO

C
K

 2
 

21 ),(21 cmRff τ=  mc R56,0≤τ  - used for examination only 
All dependent variables can be calculated sequentially. Note that information from the Block 1 is not 
used  in Block 2, which suggests some void in the set of constraints.  
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The user may want to know which variables are influenced by a certain input e.g. modulus of 
elasticity G. Since G appears in f8  and f10  so, according to the algorithm in Table 1, it will affect 
directly only Rk and n which, in turn, appears in f9, f11, and f15. Thus, nt and  Sa and  ΔDe are indirectly 
dependent on G because they depend directly on Rk and n.  In Fig. 8 it is shown how the chain of 
dependence proceeds. The final result is that modulus of elasticity G has an impact upon Demax, Δde, 
Fc, L0, Lc, Rk, Sa, n, nt, sc, and τc. It should be noted that this pattern holds only for the algorithm of 
Table 1. 
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Figure 8. Tracing variables dependent on G 

The matrix can also be used for identification which input variables influence certain dependent 
variable of interest. The way of search for the wire diameter d is shown in Fig. 9. It appears that the 
diameter is dependent on the load F2 , spring index w, and the spring material constants B, α, β. Like 
in the former example, this result holds for this particular calculation algorithm only. 
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Figure 9. Tracing dependence of d on input variables 
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6. Conclusions 
The occurrence matrix  is a convenient tool for storing relationships among variables and constraints 
and for identifying dependencies among the variables. It was shown that the decomposition procedure 
enables the user to find the most efficient sequence for computing unknown variables and to have the 
full insight into the computing process. The method presented in this paper is not limited to dealing 
with equations only but allows for inequalities, tabular data, and other forms of relations between 
variables. The user can convert inequalities into equalities or leave them for control only. 
The user can define a list of constraints and related variables, and any of the variables can be selected 
for input at any time. Either inputs or outputs  can be respecified  in any stage of the calculations. 
It can be checked what dependent variables are affected by a specified input variable. 
It can be checked how a change in the value of an input variable affects the dependent variables. This 
feature is beneficial for checking sensitivity against tolerances and other deviations. 
It can be checked which input variables affect a specified output variable. 
It can be checked which knew variables can be computed after introducing a new input variable. 
It can be checked which variables can not be computed when an input variable has been removed. 
When a dependent variable is changed to the input it is easy to recognize its effect on the other 
variables. This case may occur when the user is not entirely satisfied by the computed value of a 
variable and prefers an exact, e. g. taken from a catalogue, value of this variable. 
The presented methodology can be used in design of mechanical systems, particularly in larger 
problems in which there are complex dependencies between the variables. All body of formalized 
knowledge of a class of elements, assemblies or machines can be represented by means of the 
occurence matrices and processed interactively with the user according to a given task. Thanks to the 
presented techniques the user possess the possibility to plan the calculations in advance and to 
navigate rationally through constraints and variables. An interactive computer program in DELPHI 
has been devised in order to exempt the user from laborious operations with matrices.  
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