
METHODS AND TOOLS IN DESIGN PRACTICE 323

INTERNATIONAL DESIGN CONFERENCE - DESIGN 2006
Dubrovnik - Croatia, May 15 - 18, 2006.

A CONTRIBUTION TO METHODOLOGY OF
ENGINEERING CALCULATIONS

R. Rohatyński and W. Babirecki

Keywords: engineering calculation, algorithms, occurrence matrices

1. Introduction
This paper deals with composing algorithms of engineering calculations based on constraint
management. The constraints are depicted in form of a Boolean matrix called an occurence matrix.
The simplicity of occurence matrices makes them particularly suited for computer implementation in
contrast to graphs or other ways of representation [Warfield 1973].
In calculation of mechanical elements and assemblies the constraints form sparse matrices, which
should be reordered and decomposed. Several researchers have addressed the problem of selecting
input variables and solving the resulting set of equations. Steward [Steward 1965] was one of the
earliest investigators who analyzed the structure of simultaneous equations. Friedman and Leondes
[Friedman and Leondes 1969] presented a constraint theory based on mathematical operations.
Serrano and Gossard [Serrano and Gossard 1988] contributed to constraint management in mechanical
computer-aided design. Kusiak and Cheng [Kusiak and Cheng 1990] presented algorithms for
clustering the matrices for decomposition. Eppinger [Eppinger 1991] applied structural matrices to
design task organization. Aggraval et al. [Aggraval et al. 1993] presented constraint management
algorithms based on the decomposition of the occurence matrices. Recently Babirecki [Babirecki
2005] proposed similar approach to rationalization engineering calculations based on operations on the
occurrence matrices.
An engineering calculation task is defined by a valid set of constraints and input variables such that
the remaining unknown variables can be calculated. Constraints mean here generalized relations
between variables. The number of theoretically possible tasks depends on the number of constraints
and the number of variables. If these numbers are equal to each other then the matrix is square and
there is only one possible task. Usually in the original occurrence matrix there are more variables than
constraints. Thus, if the matrix is rectangular of (m x n) dimension, with (n – m) > 0, then (n – m)
variables must be specified as input. For a given number of constraints the number of possible tasks
increases very fast with the number of variables. For example, for 5 constraints and 6 variables there
are 6 different tasks possible, for 7 variables there are 15 tasks, and for 8 variables there exist
potentially as many as 56 tasks. In reality, the number of feasible task cases is smaller because certain
combinations of variables do not make semantic sense.

2. Association the system of constraints with an occurrence matrix
The occurrence matrix R for a system of n constraints with v variables is an n x v matrix [sij] where sij
is a mark if variable vj appears in relation ri or is blank otherwise. So the [sij] matrix maps the set of
variables onto the set of relations. The structure of a system of relations takes into consideration only
which variables occur in which relations, but not how they appear. In this paper, on the contrary to the
cited references, the occurrence matrix may represent any kind of relations: equations, inequalities,
tabular data, and graphs, either linear or non-linear ones.

 METHODS AND TOOLS IN DESIGN PRACTICE 324

Fig. 1 shows a system of relations and the corresponding structural matrix. Relations are written in a
normalized neutral form i.e. without distinction between output (dependent) and input (independent)
variables. This is called the neutral matrix.

a) b)
F1(za, zc, ze)=0
F2(zb, zf)=0
F3(ze, zf, zg)=0
F4(za, zd)=0
F5(zb, zd)=0
F6(zb, zf)=0
F7(zc, ze, zg)=0

za zb zc zd ze zf zg

F1 x x x
F2 x x
F3 x x x
F4 x x
F5 x x
F6 x x
F7 x x x

Figure 1. a) System of relations b) Corresponding occurrence matrix

Formulation the neutral occurence matrix is the first step. The original matrix as shown in Fig. 1 can
be reorder to a more suitable form. This is the subject of the next section.

3. The analysis and decomposition of occurrence matrices
The next step in the algorithm design is to rearrange the matrix to a set of sub-matrices. The process of
decomposition begins with selecting any row of the matrix and drawing vertical lines through each
mark in this row. Then rows with marks appearing in the vertical lines are drawing and so forth until
no once-crossed marks are left. Now the twice-crossed marks are rearranged to form the sub-matrix
(block). Next, all the twice-crossed marks are removed and the procedure is repeated until no marked
cells are left. An example of the procedure is shown in Fig. 2.

Figure 2. Decomposition of the occurence matrix: a) b) and c) - subsequent iterations,

d) -resulting matrix decomposed into three independent blocks

It is not always possible to decompose a matrix into a set of independent blocks. In general, three
structures can appear as shown in Fig. 3.

X 1 2X X 3

1Y

Y 2

Y 3

B 1

2B

B 3

0

00

00

0
0 B

12B

B 1
Y 1

Y 2

1X

0

X 2

2
21B

B1Y 1

Y 2 0

1X

0

B

X 2

2

a) b) c)

Figure 3. Three possible forms of the occurence matrix after reordering: a) the matrix fully decoupled
into independent blocks, b) the matrix partially decoupled into blocks with overlapping variables, c)

the matrix partially decoupled into blocks with overlapping constraints

The three blocks in Fig. 3a represent three independent groups of constraints which can be considered
and solved simultaneously. The matrix shown in Fig. 3b is divided into two sub-matrices linked by the
overlapping variables shown in the right-hand block. Because of these variables the sub-matrices are
interdependent and can not be considered simultaneously unless an additional action is provided.

METHODS AND TOOLS IN DESIGN PRACTICE 325

The matrix shown in Fig. 3c has also two independent blocks of constraints but there are also
constraints out of the blocks shown at the bottom of the matrix. The solution of these blocks depends
on the solution of the bottom constraints. To deal with overlapping constraints a semantic insight is
required into the nature of the constraints.
For not fully decomposable matrices like in Figs. 3b and c a number of actions can be taken. The
simplest one is to identify the overlapping variables or overlapping constraints and remove them from
the matrix. For example, one can remove from the matrix the variable that has the greatest value of
the dependence index id. This index is calculated for a chosen variable as a number of variables
appearing in constraints which contain the variable. After having id calculated for all the variables, the
variable of the highest index is removed out of the matrix and then the decomposition process
proceeds. It means that the removed variable should become an input variable, i.e. the independent
one. Kusiak and Cheng proposed a branch-and-bound algorithm to deal with such kind of matrices.

4. The derivation of calculation algorithms from occurrence matrices
The search for a calculation algorithm from the occurence matrix begins with the determination of
input variables. It changes the neutral matrix into the directed one. The input variables can be
introduced one at a time or at once. It is convenient to separate the specified input variables from the
original matrix as it is shown in Fig. 6. When the inputs are determined one after the other the
occurrence matrix must be updated step by step by removing columns with the specified variables.
After each operation the resulting matrix should be analyzed and reordered. If all input variables are
introduced at once then these intermediate operations are not performed. The first alternative may give
better insight into systemic relations of the matrix but in the real use designers often prefer the second
one. In the following only this approach is presented.

Figure 4. Process of constructing of an calculation algorithm

If the occurrence matrix has been fully decomposed into blocks then for each block exists a separate
algorithm of calculations. The process of algorithm construction starts with summing the entries in
each row of the matrix to form a column for the row indexes sw. The row index indicates how many
dependent (output) variables must be find in order to satisfy the constraint in a row. If the row index is
equal to 1 then the constraint can be solved independently. Solving this constraint means that one
operation of the being constructed algorithm has been determined. Then the occurrence matrix is
updated and the procedure continues. If there is no one row with only one entry, this implies that a
procedure of identifying simultaneous equations should be performed. This procedure continues until
the sw column is identically equal to 0 i.e. there are no more dependent variables remaining, which
means that the algorithm is complete.

z M
s '

H i Z2

X1
0

X1
1

X1
2

X1
3

X1
4

X1
5

X3
0

X3
5

X3
7

X3
9

f f f g f g g g g g
t f8 x x x 3
t f9 x 1
r f10 x 1
r f11 x x 2
r f12 x x x 3
r f13 x 1
r f20 x 1
r f22 x x 2
r f23 x x 2
r f24 x x 2

po po po po po po w
y

po w
y

po

sw

σ=→ 109 xf
γ=→ 1310 xf
'1513 ρ=→xf
Hxf =→ 3020

z M
s

i Z2

X1
1

X1
2

X1
4

X3
5

X3
7

X3
9

f f f g g g
t f8 x x 2
r f11 x x 2
r f12 x 1
r f22 x x 2
r f23 x x 2
r f24 x x 2

po po po po w
y

po

sw

SMxf =→ 1412

z i Z2

X1
1

X1
2

X3
5

X3
7

X3
9

f f g g g
t f8 x x 2
r f11 x 1
r f22 x 1
r f23 x x 2
r f24 x x 2

po po po w
y

po

sw

τ=→ 1111 xf
ixf =→ 3522

z Z2
X1

2
X3

7
X3

9

f g g
t f8 x 1
r f23 x 1
r f24 x x 2

po w
y

po

sw

zxf σ=→ 128

23723 zxf =→
X3

9

g
r f24 x 1

po

sw

Θ=→ 3924 xf

 METHODS AND TOOLS IN DESIGN PRACTICE 326

Inequalities require a special attention. They can not be used for identification of the value of a
particular dependent variable. They must be checked as soon as possible or convert into equalities.
In an example shown in Fig. 4 the original matrix and all the subsequent ones contain rows with at
least one dependent variable, which makes the algorithm easy to find. In the original matrix there are
four rows with sw index equal to one. After crossing out the rows with these constraints and the
column with just calculated variables the subsequent matrix appears, in which there are six constraints
and one among them has again one unknown variable. Thus the next matrix results and the operation
repeats. The inscriptions in the Fig. 4 denote constraints that are solved and resulting variables. The
resulting algorithm can be drawn in any useful form e.g. a graph, a flow-chart or other. This example
was taken from a jackscrew calculation [Babirecki 2005].

5. Example of application: setting up an algorithm for helical spring calculation
For helical springs used in ordinary applications 24 constraints of various kind have been selected
[Branowski 1997], as shown in Table 1. In these constraints 33 variables appear. If we assume that
the constraints specified in Table 1 represent the basic body of formal knowledge of helical
compression springs then they can be used for solving any problem of the spring analysis and/or
synthesis. The variety of problems that may occur in practice is enormous.
The relevant variables for the helical spring are:
B - spring coefficient (usually B = 0,5 for compression springs); D - mean coil diameter; Demax -
maximal outside spring diameter; ΔDe - diameter enlargement of compressed spring; Fc - theoretical
load of blocked spring; F2 - spring load; ΔF2 - load deviation; G - modulus of elasticity; Lc - length of
the blocked spring; L0 - free spring length; OdF2 - relative load deviation; R - spring rate constant; Rk -
corrected stiffness (averaged); Rm - tensile strength; RELdop - allowable relaxation index; Sa -
minimal clearance between coils (total); T - spring working temperature; d - wire diameter; Δd - wire
diameter deviation; n - number of active coils; nt - total number of coils; sc - blocking deflection; s2 -
spring deflection; w - spring index; α, β - material constants; τ2 - shearing stress; τc - shear stress of
the blocked spring.
The occurrence matrix shown in Fig. 5 encompasses the constraints in rows in original order. The
first left column in the matrix denotes a constraint type; r indicates equation, n – inequality, t – a
constraint in form of table or chart. The second left column shows constraint numbers. The second
upper row designates symbols of variables which occur in the constraints, while the first one denotes
the type of a variable; f- indicates the functional variable, g – geometric, m – material. x1, x2,…. x33
are symbols for relevant variables. If a variable occurs in a constraint then the relevant cell is marked.

f f f f f g f f g g m m m g m g g f g g g g g g g g f f f f f f f

D
F 2 F 2

O
dF

2

F n R S 2 R
m

in

R
m

ax d w a b B D G n n t R
k

S a D
d L c s n L 0 D
D

e

D
m

ax

S c F c t c R
m t 2 R

E
L

T

R
E

L d
op

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33

r f1 x x x
r f2 x x
r f3 x x x
r f4 x x x x
r f5 x x x x
n f6 x x x x x x
r f7 x x x
r f8 x x x x x
r f9 x x
r f10 x x x x x
r f11 x x x x
n f12 x x x x
r f13 x x x
r f14 x x x x
r f15 x x x x x
r f16 x x x x x
r f17 x x x
r f18 x x x
r f19 x x x x
r f20 x x
n f21 x x
r f22 x x x x
t f23 x x x x
n f24 x x

Figure 5. Neutral occurrence matrix for helical spring

The original neutral matrix could be ordered and blocked in order to decompose it to smaller sub-
matrices or this operation can be executed after removing the input variables.

METHODS AND TOOLS IN DESIGN PRACTICE 327

f f f f f g g g g f g g g g g g g f f f f f f g g m m m m g f f f

D
F 2 F n R R
m

in

R
m

ax d D n n t R
k

S a L c s n L 0 D
D

e

D
m

ax

S c F c t
c

R
m

t
2

R
EL F 2 S 2 w a b B G D
d T

R
EL

do
p

O
dF

2

x1 x4 x5 x7 x8 x9 x14 x16 x17 x18 x19 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x2 x6 x10 x11 x12 x13 x15 x20 x32 x33 x3

r f1 x x x
r f2 x x
r f3 x x x
r f4 x x x x
r f5 x x x x
n f6 x x x x x x
r f7 x x x
r f8 x x x x x
r f9 x x
r f10 x x x x x
r f11 x x x x
n f12 x x x x
r f13 x x x
r f14 x x x x
r f15 x x x x x
r f16 x x x x x
r f17 x x x
r f18 x x x
r f19 x x x x
r f20 x x
rs f21 x x
r f22 x x x x
t f23 x x x x
rs f24 x x

PO PO PO PO PO W
Y

W
Y

PO W
Y

PO PO PO PO W
Y

PO PO PO PO PO PO PO PO W
E

W
E

W
E

W
E

W
E

W
E

W
E

W
E

W
E

W
E

W
E

Figure 6. The directed occurrence matrix for a set of determined variables shown on the right

An example of the directed matrix is shown in Fig. 6 where input variables are separated on the right.
These are named as WE. The task consists in finding out the wire diameter d, total number of coils nt,
mean coil diameter D, and free spring length L0. These are the main output variables named as WY.
All other variables which should also be evaluated are regarded as intermediate and named as PO.
Now in the occurrence matrix there are only 22 variables to evaluate but still 24 constraints with four
inequalities amongst them. Since inequalities can not be used for calculation of variables then two of
them should be turned into equations. The other two inequalities, designated rs, must be satisfied as
they are.

f f f f f g g g g f g g g g g g g f f f f f f g g m m m m g f f f

D
F 2

R
m

in

R
m

ax

F n R d D n n t R
k

S a L c s n L 0 D
D

e

D
m

ax

S
c F c t c R
m t 2 R

E
L

F 2 S 2 w a b B G D
d T

R
E

L d
op

O
dF

2

x1 x7 x8 x4 x5 x9 x14 x16 x17 x18 x19 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x2 x6 x10 x11 x12 x13 x15 x20 x32 x33 x3

r f1 x x x
r f4 x x x x
r f5 x x x x
r f2 x x
r f3 x x x
n f6 x x x x x x
r f7 x x x
r f8 x x x x x
r f9 x x
r f10 x x x x x
r f11 x x x x
n f12 x x x x
r f13 x x x
r f14 x x x x
r f15 x x x x x
r f16 x x x x x
r f17 x x x
r f18 x x x
r f19 x x x x
r f20 x x
rs f21 x x
r f22 x x x x
t f23 x x x x

rs f24 x x

P
O

P
O

P
O

P
O

P
O

W
Y

W
Y

P
O

W
Y

P
O

P
O

P
O

P
O

W
Y

P
O

P
O

P
O

P
O

P
O

P
O

P
O

P
O

W
E

W
E

W
E

W
E

W
E

W
E

W
E

W
E

W
E

W
E

W
E

Figure 7. The decomposed occurrence matrix for the helical spring calculation

After re-arranging rows and columns in the matrix a new its form is obtained, consisting of two
independent blocks. It is shown in Fig. 7. This matrix has been used to found a rational calculation
algorithm. Babirecki has shown that four different algorithms can be set up. One is shown in Table 1.

 METHODS AND TOOLS IN DESIGN PRACTICE 328

Table 1. Calculation algorithm for helical spring
Calc. order Constraints Evaluated variables

 From relation Calculate

1),,(2221 FOdFFff Δ= []
100

2
221

FOdFFx =Δ=

2),,,(min2224 RFFsff Δ=
2

22
min7 s

FFRx Δ−==
B

LO
C

K
 1

3),,,(max2225 RFFsff Δ=
2

22
max8 s

FFRx Δ+==

1),(22 FFff n= 24 15,1 FFx n ==

2),,(223 FsRff =
2

2
5 s

FRx ==

3),,(13 nn FRsff =
R
Fsx n

n ==22

4),,,,,(6 BwFdff n βα= β

απ
−

⎟
⎠
⎞

⎜
⎝
⎛≥=

2
1

9
8

B
wFdx n - turned into equation

5),,(7 wDdff = wdDx ==14

6),,,,(8 nRwGdff =
Rw

Gdnx 316 8
==

7),(20 dRff m= () ()[]ddRx m log902470log82022205,029 −+−==

8),(9 nnff t= 217 +== nnx t

9),,,,(10 nRDGdff k=
nD

GdRx k 3

4

18 8
==

10),,,(11 nDSdff a= nd
d

DSx a ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+== 1,00015,0

2

19

11),,,(2222 τdDFff = 3
2

230
8

d
DFx

π
τ ==

12),,,(223 τdDRELff =),,(231 τdTfRELx ==

13),(24 dopRELRELff = dopRELREL ≤ - used for examination only

14),,,(12 Ct Ldndff Δ=)(21 ddnLx tC Δ+≤= - turned into equation

15),,,(014 nac sSLLff = nac sSLLx ++== 023

16),,,,(015 eDDndLff Δ=

D

dd
n

dL
n

dL

Dx e

20
2

0

24

2,08,0
1,0

−⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛ −

=Δ=

17),,(017 cc sLLff = cc LLsx −== 026

18),,,(max16 dDDDff ee Δ= ee DdDDx Δ++== max25

19),,(18 cc sRFff = cc RsFx ==27

20),,,(19 cc dDFff τ=
328

8
d

DFx c
c π

τ ==

B
LO

C
K

 2

21),(21 cmRff τ= mc R56,0≤τ - used for examination only
All dependent variables can be calculated sequentially. Note that information from the Block 1 is not
used in Block 2, which suggests some void in the set of constraints.

METHODS AND TOOLS IN DESIGN PRACTICE 329

The user may want to know which variables are influenced by a certain input e.g. modulus of
elasticity G. Since G appears in f8 and f10 so, according to the algorithm in Table 1, it will affect
directly only Rk and n which, in turn, appears in f9, f11, and f15. Thus, nt and Sa and ΔDe are indirectly
dependent on G because they depend directly on Rk and n. In Fig. 8 it is shown how the chain of
dependence proceeds. The final result is that modulus of elasticity G has an impact upon Demax, Δde,
Fc, L0, Lc, Rk, Sa, n, nt, sc, and τc. It should be noted that this pattern holds only for the algorithm of
Table 1.

f f f f f g g g g f g g g g g g g f f f f f f g g m m m m g f f f

D
F 2

R
m

in

R
m

ax

F n R d D n n t R
k

S a L c s n L 0 D
D

e

D
m

ax

S c F c t c R
m t 2 R

E
L

F 2 S 2 w a b B G D
d T

R
E

L d
op

O
dF

2

x1 x7 x8 x4 x5 x9 x14 x16 x17 x18 x19 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x2 x6 x10 x11 x12 x13 x15 x20 x32 x33 x3

r f1 x x x
r f4 x x x x
r f5 x x x x
r f2 x x
r f3 x x x
n f6 x x x x x x
r f7 x x x
r f8 x x x x x
r f9 x x
r f10 x x x x x
r f11 x x x x
n f12 x x x x
r f13 x x x
r f14 x x x x
r f15 x x x x x
r f16 x x x x x
r f17 x x x
r f18 x x x
r f19 x x x x
r f20 x x
rs f21 x x
r f22 x x x x
t f23 x x x x

rs f24 x x

P
O

P
O

P
O

P
O

P
O

W
Y

W
Y

P
O

W
Y

P
O

P
O

P
O

P
O

W
Y

P
O

P
O

P
O

P
O

P
O

P
O

P
O

P
O

W
E

W
E

W
E

W
E

W
E

W
E

W
E

W
E

W
E

W
E

W
E

Figure 8. Tracing variables dependent on G

The matrix can also be used for identification which input variables influence certain dependent
variable of interest. The way of search for the wire diameter d is shown in Fig. 9. It appears that the
diameter is dependent on the load F2 , spring index w, and the spring material constants B, α, β. Like
in the former example, this result holds for this particular calculation algorithm only.

f f f f f g g g g f g g g g g g g f f f f f f g g m m m m g f f f

D
F 2

R
m

in

R
m

ax

F n R d D n n t R
k

S a L c s n L 0 D
D

e

D
m

ax

S c F c t
c

R
m

t
2

R
E

L

F 2 S 2 w a b B G D
d T

R
E

L d
op

O
dF

2

x1 x7 x8 x4 x5 x9 x14 x16 x17 x18 x19 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x2 x6 x10 x11 x12 x13 x15 x20 x32 x33 x3

r f1 x x x
r f4 x x x x
r f5 x x x x
r f2 x x
r f3 x x x
n f6 x x x x x x
r f7 x x x
r f8 x x x x x
r f9 x x
r f10 x x x x x
r f11 x x x x
n f12 x x x x
r f13 x x x
r f14 x x x x
r f15 x x x x x
r f16 x x x x x
r f17 x x x
r f18 x x x
r f19 x x x x
r f20 x x
rs f21 x x
r f22 x x x x
t f23 x x x x

rs f24 x x

P
O

P
O

P
O

P
O

P
O

W
Y

W
Y

P
O

W
Y

P
O

P
O

P
O

P
O

W
Y

P
O

P
O

P
O

P
O

P
O

P
O

P
O

P
O

W
E

W
E

W
E

W
E

W
E

W
E

W
E

W
E

W
E

W
E

W
E

Figure 9. Tracing dependence of d on input variables

 METHODS AND TOOLS IN DESIGN PRACTICE 330

6. Conclusions
The occurrence matrix is a convenient tool for storing relationships among variables and constraints
and for identifying dependencies among the variables. It was shown that the decomposition procedure
enables the user to find the most efficient sequence for computing unknown variables and to have the
full insight into the computing process. The method presented in this paper is not limited to dealing
with equations only but allows for inequalities, tabular data, and other forms of relations between
variables. The user can convert inequalities into equalities or leave them for control only.
The user can define a list of constraints and related variables, and any of the variables can be selected
for input at any time. Either inputs or outputs can be respecified in any stage of the calculations.
It can be checked what dependent variables are affected by a specified input variable.
It can be checked how a change in the value of an input variable affects the dependent variables. This
feature is beneficial for checking sensitivity against tolerances and other deviations.
It can be checked which input variables affect a specified output variable.
It can be checked which knew variables can be computed after introducing a new input variable.
It can be checked which variables can not be computed when an input variable has been removed.
When a dependent variable is changed to the input it is easy to recognize its effect on the other
variables. This case may occur when the user is not entirely satisfied by the computed value of a
variable and prefers an exact, e. g. taken from a catalogue, value of this variable.
The presented methodology can be used in design of mechanical systems, particularly in larger
problems in which there are complex dependencies between the variables. All body of formalized
knowledge of a class of elements, assemblies or machines can be represented by means of the
occurence matrices and processed interactively with the user according to a given task. Thanks to the
presented techniques the user possess the possibility to plan the calculations in advance and to
navigate rationally through constraints and variables. An interactive computer program in DELPHI
has been devised in order to exempt the user from laborious operations with matrices.

References
Aggraval, R., et al., “Engineering Constraint Management Based on an Occurrence Approach”, Journal of
Mechanical Design, Vol. 115, March 1993, pp. 103-109.
Babirecki, W., “Towards rationalization of calculation of machine elements and assemblies by application of
dependency matrices” (in Polish), PhD Thesis, Department of Mechanical Engineering, The University of
Zielona Góra, 2005.
Branowski, B., “Metal Springs” (in Polish), WNT Warszawa, 1997.
Eppinger, S., “Model-Based Approaches to Managing Concurrent Engineering”, ICED Zurich, August 1991.
Friedman, G. J., Leondes, C. T., „Constraint theory. Part I: Fundamentals”, IEEE Trans. Syst. SCI & Cyber.
Vol. SSC-5, No. 1, 1969, pp. 48-56.
Kusiak, A., Cheng, C. H., „A branch-and-bound algorithm for solving the group technology problem”, Annals
of Operations Research Vol. 26, 1990, pp. 415-431.
Serrano, D., Gossard, D., “Constraint Management in MCAE” Artificial Intelligence in Engineering Design, J.
S. Gero (Ed.), Computational Mechanics Publications, 1988, pp. 361-378.
Steward D. V., “Partitioning and tearing systems of equations”, SIAM J. Numer. Anal., Vol. 2, No. B, 1965.
Warfield, D. E., “Binary matrices in system modeling”, IEEE Transactions on Systems, Man, and Cybernetics,
SMC-3, 1973, pp. 441-449.

Ryszard Rohatyński, Prof. dr hab. eng.
Chair of Production Systems Design
University of Zielona Góra, Department of Management
Podgórna 50, 65-246 Zielona Góra, Poland
Tel.: +48 68 328 2546
Fax.: +48 68 328 2554
Email: r.rohatynski@wz.uz.zgora.pl

