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1. Introduction 
Effective change management is a key to successful design development. As products and parts 
change, others can be affected, leading to further - often unexpected and costly - changes. These 
knock-on effects can jeopardise the timely delivery of projects and carry therefore a great risk for the 
entire design process. Assessing these potential knock-on effects is vital before selecting a possible 
change implementation. The Change Prediction Method (CPM) [Clarkson et al., 2004], captures the 
direct links between components in a systems and attaches impact and likelihood values to them. As 
change can only propagate through the direct links of components, the indirect risk of change 
propagating can be calculated, through what is essentially a brute force algorithm. The direct impact 
and likelihood values required for this computation are captured in a product connectivity model, that 
usually has the form of a Design Structure Matrix (DSM), but can also be interpreted as a directed 
digraph. This model is elicited in a two stage process in design meetings. A suitable product 
breakdown is developed and the likelihood and impact values of a change spreading from one 
component to an other are based on judgements of experienced designers (see [Jarratt et al., 2004]).  
Depending on the size of model, the change prediction method can require a large amount of data 
(impact and likelihood values of direct change propagation), and be difficult to compute. To allow 
designers to easily assess direct and indirect change consequences, this paper proposes the use of 
simple, easily accessible heuristics that make use of complexity measures of graphs as employed in 
graph theory. These connectivity heuristics have certain advantages, such as simple computation, 
visibility and availability of the data, over the specific change values calculated in the current change 
prediction method. In this paper we will introduce these heuristics and discuss their merits by 
comparison with the values calculated by the CPM method.  

2. Barriers to CPM 
The change prediction method was used successfully in several industrial settings, however, it requires 
the commitment of internal champions to take up the method. This section explores which aspects of 
change propagation can act as barriers for the industrial use of the change prediction method. 

2.1 Computational Cost 
Computation of combined risk values used in the change prediction method as described in [Clarkson 
et al., 2004], requires high computational effort. The search for all propagation paths used to calculate 
the combined likelihood value of a change is essentially a “finding the k shortest paths” problem 
which can be solved in O(m+nlog(n)+k) time. It can be shown that the total number of paths to be 
considered in a product linkage model with n components and a density of d (the number of links in 
the model divided by the possible number of links) can be estimated as growing exponentially with the 
number of components (see Equation 1). 
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For current product models described for example in [Jarratt et al., 2004], the number of all 
propagation paths is too large to be computed. For instance, for the model of a diesel engine with only 
41 components and 254 direct links between them, the expected number of propagation paths between 
all component pairs is 8.47*1019 (the number of molecules in a cm3 of air is in the order of 3*1019). 
Even when reducing the maximal considered path length to six, there are still 1.91*106 expected paths 
for this relatively small product model. Especially in the light of interactive software, current 
computer hardware is not able to compute these numbers of propagation paths in an adequate time and 
it is impossible to compute change propagation, for instance, for products consisting of thousands of 
highly connected components. The heuristics described later in this paper have the advantage that they 
are less computational intensive and can even be calculated for very large product models. 

2.2 Model building 
The CPM method is applicable both to the generation of versions of an existing product and the design 
of a new generation of a product The data stored in the connectivity model used to predict change 
propagation [Clarkson et al., 2004] consists of quantitative values describing the direct change 
likelihood and impact of changes propagating directly from one component to the other one. These 
values are elicited in interviews and group meetings with experienced designers. However, these 
values are usually based on experience with past products and in very early stages of the design 
process, this data might not be available unless the new product is very similar. The heuristics 
described in this paper are purely qualitative measures used for instance in complexity theory to 
describe the complexity of a product (see [Summers and Shah, 2003]). While quantitative values 
might not yet be available or be difficult to assess for a different product, the product architecture 
might already be in place or remain constant, so that it can be the basis of a purely qualitative product 
connectivity model. The heuristics used in this paper can be applied to such a simple model. 
Another problem is that it is very difficult to assess accurate likelihood and impact values for a change 
propagating between two components. As shown for instance in [Ayton and Pascoe, 1995], it is very 
difficult for human experts to assess likelihood values correctly. As these “uncertain” values are then 
used to compute change propagation effects with exact algorithms, it is questionable to what extent 
these values can be trusted. 
A last argument in favour of simple heuristics is the time and therefore cost of building a product 
model.  Establishing the product architecture and the qualitative links captured in a connectivity model 
alone requires valuable time and commitment of all designers involved. Capturing change likelihood 
and impact values increases the time necessary to build a model significantly and there is a trade-off 
between the benefits such a model provides and the effort needed to build and maintain it. 

2.3 Visual Access 
While there is a whole body of literature on how to visualise and represent qualitative graph 
structures, such as matrix-based representations like DSMs (e.g. [Browning, 2002]) and node edge 
diagrams (e.g. [Di Battista et al., 1994]), it can be difficult to incorporate quantitative likelihood and 
impact values into the visual displays. Attempts were made to show combined risk values in a DSM-
like structure (see the combined risk plot introduced by [Clarkson et al., 2004] and Figure 1, left). 
However, these displays hide all direct links of the underlying model, and users are not able to identify 
whether a high change risk results from direct or indirect component connections (see [Keller et al., 
2005]). There are, however, several possibilities to incorporate this information into node-link 
displays, such as using the edge width to indicate the likelihood or risk of a link. Spring layouts, where 
each link of a graph is modelled as a spring, offer the functionality to lay out a node-link diagram in 
such a way that the lengths of the edges can be approximately proportional to its weight (in this case: 
likelihood or risk values). However, these spring layouts are only an approximation and cannot 
visualise component connections when the change risk or likelihood in one direction is much larger 
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than in the other direction. [Keller et al., 2005] introduce a node-link display that shows such 
combined risk values for a particular change case (when one component is identified to cause a 
change). In this display (see Figure 2, right) the distance of one component to the initiating change 
component in the centre of the display is inversely proportional to the logarithmic change risk shown 
in a radial layout as calculated with the CPM method. The advantage of the heuristics described in the 
remainder of this paper is that they can be easily identified and assessed visually. Studies described for 
instance in [Ghoniem et al., 2004] use the number of common neighbours and the shortest path to 
assess how well DSMs and node-link diagrams are suited to show graph data. This shows that these 
measures have been proven to be visibly accessible. 

      
Figure 1. Indirect change risk visualised for a diesel engine: A combined risk plot (left) and a risk 

network (right) for the "Cylinder Head Assembly" 

3. Simple Graph Measures as Heuristics 
A set of well-established graph measures will be assessed in this section to investigate whether these 
measures can be used to indicate to how changes might propagate between components. The measures 
introduced here are simple graph theoretical measures, further descriptions can be found in standard 
text books on graph theory (e.g. [Boffey, 1982]). In a change context, similar measures (such as the 
shortest path for example) were used to define product modularity (see [Sosa et al., 2005]). The 
difference between this paper and [Sosa et al., 2005] is that the heuristics used here describe relations 
between two components, rather than providing centrality measures (that show how much a 
component is integrated in the product architecture) for one component. The heuristics (named H1-
H3) will then be tested against the existing change prediction method that proved to produce valid 
results throughout different case studies. For this study, only change likelihood values will be 
considered as the heuristics do not incorporate any measures of impact and thus are not able to reflect 
change risks. 

3.1 Shortest Path Length 
The shortest path length between two nodes is the minimal number of links that connect these two 
nodes in the graph. A shortest path length of 1 for instance indicates that the two components are 
directly connected. Computing the shortest path between two nodes is one of the standard calculations 
performed on graphs and several algorithms exist that do this computation in little time. The standard 
algorithm to calculate the shortest path between two components is the Dijkstra algorithm that has a 
proven effort of O(n2) to compute the shortest path from one node to all other nodes (e.g. [Boffey, 
1982]). See Figure 2 (a) for the shortest path between two nodes in a simple graph example that could 
be interpreted as a product connectivity model for a very small product.  
The question is: “How does the length of the shortest path relate to the chance of change propagating 
between two components?” The hypothesis is that if the shortest path between two components is very 
small, the changes need not to travel a long distance so a propagation is more likely than for 
components that are very far away in the graph (H1). 
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Figure 2. The shortest path from A to D has the length of 2 (a). Edge connectivity of 2 from A to D 
(b). Two common neighbours between A and D (c) 

3.2 Edge Connectivity 
The edge connectivity between two nodes in a graph describes how much material can flow between 
these two nodes under the assumption that each edge has a capacity of one. It can be shown that the 
edge connectivity is equivalent to solving the cut-problem in graphs [Boffey, 1982]. This means that 
the edge connectivity is equal to the number of edges that have to be minimally removed from the 
graph in order to remove the possibility to reach one node from the other (minimal edge cut). It can be 
shown that computing the edge connectivity between two nodes has an effort of O(n3) [Boffey, 1982]. 
For an example of the edge connectivity between two nodes, see Figure 2 (b).  
If the edge connectivity between two nodes is high, it means that there are a high number of paths 
connecting these two nodes, allowing changes to propagate through different routes (H2). It can be 
argued that high edge connectivity means that there is a high change propagation likelihood. Low 
connectivity should indicate that there are not many possible change propagation routes, so changes 
are less likely to propagate between these two components. 

3.3 Number of Common Neighbours 
The number of common neighbours between two nodes is the number of components that share links 
with both nodes. The more common neighbours two nodes have, the more likely a change is to 
propagate between them as they have a high number of potential 2nd order connections between them 
(H3). In contrast to the heuristics described beforehand, this heuristic does not take directionality of 
the links into account, which might be a disadvantage.  
See Figure 2 (c) for an example of how to determine the common neighbours between two 
components (note that in this example, the edge connectivity equals the number of common 
neighbours, in the general case, this does not hold). The number of common neighbours can be 
computed quite easily and has O(n2) effort from one to all components. 

4. Assessment of the Heuristics 
This section will discuss how well the heuristics established in the previous section can describe 
change propagation combined likelihood values. For this purpose, the values calculated for a well-
studied product model will be compared with the values of the different heuristics. For other product 
models, a similar behaviour was observed (see Table 1). The diesel engine product connectivity model 
was elicited during an extensive case study at a diesel engine company described by [Jarratt et al., 
2004]. This model was chosen as a well-studied example where the predictions using the CPM method 
clearly matched the expectations of experienced designers and historic change data. The model 
consists of 41 components connected through 254 direct linkages resulting in a density of 15.5%. 
Further analyses of this model are also described in [Keller et al., 2005]. 
For the analyses, a standard statistical modelling method (linear regression) is used as well as box 
plots as a visual method. A box plot is a well-known way of representing the density of data by 
showing important statistics (the box of one of the plots for instance shows 50% of the data, the 
central horizontal line represents the median).  
A linear regression assumes a linear dependency between the influencing factors (independent 
variables x, here: the heuristic values) and the factor that is to be explained (the dependent variable y, 
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here: combined likelihood value of the change prediction method); and independence between the 
influencing factors. The resulting model of a linear regression is of the form y=ax+b with the 
parameters a (the gradient) and b (the constant). In this paper we are not (in the first place) interested 
in the exact parameter values (that are likely to differ amongst different product models as a result of 
scaling issues), but in the significance of the parameter a. If this parameter is significantly different 
from 0, then there is an influence of the independent factors x on the dependent variable y. The R2 
value of the model, which signifies the model fit, is also of interest as it describes how much 
variability of the dependent variable is explained. However, as the heuristics are all qualitative we 
don’t expect high values for R2.  
The resulting regression model could also be used to predict values for y given a value for x. 
However, the models shown later in this section should not be used for such predictions, as the factors 
will differ for each product model. For the sections 4.1., 4.2. and 4.3. such a simple one-dimensional 
regression will be used, in section 4.4. a combined model for the diesel engine model will be assessed 
that makes use of 3 independent variables (the three heuristics). As a third method, the most likely 
links using combined likelihood and the highest links identified by the heuristics were compared. A 
high match would indicate that the heuristic identifies most of the high-likelihood values of CPM. 

4.1 Shortest Path Length 
The regression model for the shortest path length between two components describing the combined 
likelihood value showed that the linear factor a of the linear regression is significantly less than 0 
(p<0.001, the exact values for a can be found in Table 1) and signifies a negative trend, which means 
the smaller the shortest path length, the higher the combined change likelihood (on average) and thus 
proves H1. The model has an R2 value of 0.332, which means that about 33% of all the variability of 
the combined likelihood value is explained through this model.  
A visual representation of how the shortest path length describes the combined likelihood value is 
shown in Figure 3 (a), where this trend is immediately visible. It also holds that 47% of the 15% 
highest combined likelihood links are also amongst the 15% lowest shortest path links (47% match). 
This means the bigger the length of the shortest path between two components, the lower the change 
likelihood. 

 
 a)   b)    c) 

Figure 3.  Box plots show the influences of the heuristics on the combined likelihood values 
computed by the change prediction method. a) Shortest path length, b) edge connectivity, c) number 

of common neighbours 

4.2 Edge Connectivity 
The regression model for the influence of the edge connectivity on the combined risk values gave the 
following results. Like in the model for the shortest path length, the parameter value for a is 
significantly different from 0 (p<0.001, however, in this case the parameter is significant larger than 0) 
which shows the existence of a positive influence of the edge connectivity on the combined likelihood 
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value and proves H2 (the exact values for the factor a can be found in Table 1, see also Figure 3 (b) 
for the visual representation). This means that the higher the edge connectivity between two nodes, the 
higher the expected combined likelihood of a change propagating between these two components. The 
R2 value is calculated to be 45.4%, meaning that approximately 45% of the variability of the combined 
likelihood value is described through this model. Of the 30% highest link values there is a 64% match 
between the edge connectivity values and the combined likelihood values. 

4.3 Number of Common Neighbours 
The regression model for the number of common neighbours heuristic describing the combined 
likelihood value are as follows. Again, the parameter value a for the linear trend is significantly larger 
than 0 (p<0.001, see also Table ), meaning that this factor has a significant positive effect on the 
combined likelihood values (H3). This trend can also be observed visually in Figure 3 (c). This model 
explains 37.9% of the variability of the combined likelihood (R2=0.379) for the diesel engine example. 
Of the 30% highest link values (for both, combined likelihood and the number of common 
neighbours), this heuristic gives a 69% match. To summarise, the higher the number of common 
neighbours, the higher the combined likelihood values between a component pair. 

4.4 Combination of Heuristics 
Finally, a model trying to explain the combined likelihood value using all three heuristics was 
computed. One must mention that one of the assumptions of the regression, which is that the 
independent variables are independent, is violated in this example (as the shortest path length and the 
number of common neighbours for example depend on each other). However, the results are quite 
strong, giving a R2 value for this model of 58.2%. Each of the factors in a (which is a vector of three 
values in this case) are significantly different from 0, supporting the values from the previous 
introduced models. This model gives quite a good approximation of the combined likelihood values 
given all three heuristics (see Figure 4 for a scatter plot that shows the value predicted by the model 
plotted against the combined likelihood value). Again, the most important finding is that all factors are 
significantly different from 0, so there always exists a trend. Using this combination of heuristics, 
there is a 77% match for the 46% biggest links. The main message of this model is that knowing the 
values of these three heuristics (that can even be visually seen from a graph representation), one would 
be able to predict a vast amount of the combined likelihood values without the need to use 
computational intensive algorithms. 

 
Figure 4. Scatter plot of the predicted model value and the combined likelihood value 
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4.5 Results for other product models 
Table 1 summarises the results for the diesel engine model as well as for other product models that 
differ in size and density (dens.). All of these models are based on case studies conducted by other 
change researchers and are described elsewhere (see for example [Jarratt et al., 2004]). In all but one 
cases, the parameter value for a is significantly different from 0, which is the most important finding 
as it verifies that the trends observed for the diesel engine model hold in all other models. However, as 
one can see there are differences in how much of the variability of the combined likelihood values is 
explained by each model. The only model that seems to be difficult to assess with the heuristic values 
is the helicopter model (this is the consequence of mostly very small and some very large direct 
change probabilities that result in low R2 values). Additionally, the common neighbour heuristic has 
no significant effects on the hairdryer model (probably due to the small size of the model). See the 
non-significant parameter for the common neighbours (indicated by *).  
As one can see the individual parameter values for the factor a differ between the different models. 
For instance the factor for the shortest path for the model of the helicopter (see [Clarkson et al., 2004]) 
is in the order of  a=-0.01. The match between the highest components is also quite high for all 
product models; the lowest value is 33% for common neighbour heuristic and the small hairdryer 
model. Even for the helicopter model, which has only very small R2 values for the heuristics, the 
matches are always above 50% (the shortest path heuristic for the helicopter even has the highest 
match amongst all models and heuristics). 

Table 1. Results of the heuristics for different product models 
 Shortest path Edge conn. Common neighb. 

Model size dens.  a  R2 match a  R2 match a  R2 match 
Diesel engine  41 16% -0.16 0.332 47% 0.068 0.454 64% 0.071 0.379 69% 
Helicopter  19 30% -0.01 0.111 87% 0.004 0.086 62% 0.001 0.018 51% 
Jet engine  32 28% -0.18 0.270 54% 0.052 0.443 62% 0.048 0.401 65% 
Hairdryer 6 73% -0.22 0.211 86% 0.194 0.425 77% 0.02* 0.003 33% 
Injector 15 27% -0.08 0.495 75% 0.043 0.194 75% 0.050 0.241 45% 

5. Discussion 
The analyses presented in this paper clearly show the value of simple heuristics. The heuristics are 
easily accessible and easily understandable standard graph theoretical measures and they overcome 
some of the barriers for change prediction presented in section 2. It was also mentioned that these 
heuristics can even be assessed visually given an adequate representation of the underlying product 
connectivity model. The heuristics are also based on qualitative connectivity models, which do not 
require any change likelihood, or impact assessments to be made by expert designers. As this kind of 
data could also be obtained from other models (i.e. CAD models that store information about spatial 
relations between components or circuit diagrams capturing electrical links), predicting change 
propagation based on heuristics could also be done automatically, without the need of manually 
building and maintaining product models.  
However, the heuristics do not have the full predictive power of the change prediction method, which 
can be seen for instance in the relatively low R2 values for the helicopter model and as they are 
qualitative rather than quantitative measures there will always be mismatches between these two 
methods. In that sense, practitioners should carefully decide which method is appropriate at which 
time in the design process. In later stages of the design, the standard change prediction method has 
many advantages over the proposed heuristics, as most of the data is available. In early stages of the 
design where only rough ideas of the design exist (and especially no quantitative data is available), the 
use of heuristics, however, can be advantageous. Also for assessments of the product model, when no 
computer assistance is at hand, the heuristics are clearly valuable. 
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6. Conclusions 
This paper introduced several simple heuristics that allow the assessment of change propagation in 
complex products. The bases of these heuristics are simple graph theoretical measures. These were the 
length of the shortest path, the edge connectivity and the number of common neighbours of two 
components in a product connectivity model. It was shown that the heuristics do explain the combined 
likelihood values calculated by the currently used change prediction method to a great extend. The 
heuristics inferred from the analyses are the following: 

• The longer the shortest path between two components, the less likely is change propagation; 
• The higher the edge connectivity between two components, the more likely is change 

propagation between this pair of components; 
• The more common neighbours two components share, the more likely is change propagation. 

The validity of these heuristics was tested for a number of different product models against the results 
of the existing change prediction method and showed that they can be used to predict change 
propagation on the basis of change propagation likelihood. The lack of accuracy of these heuristics is 
outweighed by their simplicity, as they do not rely on any quantitative change propagation likelihood 
and impact values and can be computed easily. Future research will examine how combinations of 
these heuristics can be used to classify components of a complex product in respect to their behaviour 
in change propagation and how heuristics can be used in order to predict change risks rather than 
change likelihood as they do now.  
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