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1. Introduction 

Simulation-based design is becoming essential in an integrated product development process 
due to pressures to reduce cost and time for product evaluation. For simulation-based design 
to be successful, we need much greater understanding of the uncertainties and imprecisions in 
the simulation processes than was formerly necessary in product development processes based 
primarily on testing. Knowledge management, with emphasis on these uncertainties, is needed 
to gain insights into accuracy, limitations and confidence in simulation techniques and in 
design data used in design analyses. Many companies could potentially benefit from better 
utilisation of knowledge and lessons learnt from in-service experience and in particular past 
failures to aid decision-making especially in variant designs [1]. This paper proposes a 
framework for the handling of uncertainty in engineering knowledge management to improve 
confidence in simulation-based design. A method for representing disparity between 
simulation results and experimental observations via error functions will be presented.  

2. Background and motivation 

The term “simulation-based design” is used to refer to the extensive use in the design process 
of simulation and analysis tools, especially computer-based, for the evaluation and 
verification of the product performance. Simulation-based design is becoming an essential 
part of a modern Product Development Process (PDP), as engineers need to deliver high 
quality products to their customers under increasing cost and time constraints [2]. The move 
of product evaluations from physical to virtual testing has, however, increased the scope for 
error [3]. Even if best modelling practice is followed and simulations are carried out correctly 
using the most advanced tools, predictions may be in error owing to a number of factors. 
There may be a lack of knowledge about how best to construct models and on the 
consequences of modelling approximations. There may be uncertainty or incomplete 
information concerning loading, geometry, material properties or time-dependent behaviours 
[4]. In some situations there are limitations in the capabilities of even the best models e.g. in 
residual stresses or material inhomogeneity. All these factors lead to substantial risks 
associated with the reliance on simulation predictions [5, 6]. 

In order that reliable virtual product evaluation is achieved, uncertainties associated with 
simulation parameters and models need to be actively managed to increase confidence in the 
results obtained. A method of assessing the adequacy of simulation methods in a given 
situation, given the current understanding of the state of data and modelling techniques, is 
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required to inform where simulations are appropriate and where not, and where resources 
need to be expended to reduce the risk of error. The focus of the work is on improving 
confidence in design analysis at the embodiment stage of a typical PDP [7]. To this end, there 
is a need for more formal organisation of knowledge [8] to provide insights into the level of 
confidence that may be placed in an analysis or simulation approach and to estimate the risks 
and uncertainties inherent in its application. In the research, we are interested to record 
evidence of model discrepancy or inadequacy and use this information firstly to suggest 
analysis strategy and secondly to predict an error function for the analysis case, based on 
knowledge of comparisons between analysis and prototype tests or in-service experience of 
the product performance. The organisation of knowledge is based on a framework, for 
engineering knowledge management that seeks to characterise both systematic and stochastic 
uncertainty arising from the simulation process and to use this characterisation to aid decision-
making in design simulation. 

3. A framework for uncertainty characterisation 

The simulation of the performance of an engineering product will typically involve multiple 
design targets, each associated with different load cases and failure modes. The analysis of 
each load case will be based on design parameters, and will involve one or more transfer 
functions1 for the computation of the performance parameters of interest. These transfer 
functions may take different forms depending on the mechanism for the physical process. For 
instance, the thermal fatigue, mechanical fatigue and wear of an engine will be modelled 
differently. In design simulation, virtual prototypes built on various theories and 
computational models will be tested against the performance targets that the product is 
designed to achieve, and the performance parameters identified from these virtual prototypes 
may be compared to physical evidence to verify the accuracy of the virtual evaluation. 

A systematic organisation of the knowledge accumulated from such simulation activities, in 
particular concerning the comparisons of model and physical evidence, is needed to give 
insights into the level of confidence in model estimates. These insights will indicate where 
data collation, experimental work and research and development are needed in a simulation-
based design environment. The framework proposed in this paper allows the design 
correlations to be characterised in terms of the extent and nature of the evidence concerning 
uncertainties in design data and in the simulation models. A classification developed in the 
framework organises knowledge of simulation results and experimental observations through 
a 3 dimensional Cartesian system in Figure 1. 

The axes of this figure are: i-axis - performance parameter, j-axis – physical evidence and k-
axis - design space. The i- and j-axes are scaled according to the quality and quantity of data 
characterising the variables. The design space (k-axis) is organised according the number of 
variants of the design concept for which data are available. The origin (0,0,0) represents cases 
with no prior evidence of similar system and analysis model available, e.g. design of a state-
of-the-art structure or a novel technology space vehicle. In this situation, indirect and 
subjective evidence are sought to accumulate more understanding about the system to be 
designed. When sufficient confidence is attained in a concept, further examples may be 
produced and experience with them will validate initial findings. For an established design 
 

                                                 
1 Transfer functions are the relationships that relate the input variables (design parameters) to the output variables 
(performance parameters) with the purpose of evaluating the characteristics of interest for a physical system, 
often represented by mathematical and computational models developed from first principles, empirical 
relationships and heuristics. 
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Figure 1 Classification of correlations, (i, j, k) = (performance parameter, evidence, design space) 

there may be many exemplars, and as more similar systems are designed and validated, the 
knowledge accumulated in this manner enhances the knowledge base for adaptations of the 
design, signifying the progression of design know-how, i.e. knowledge for each axis improves 
away from the origin. The definitions for scales in each axis are detailed in subsequent sub-
sections. 

3.1 Performance parameter (i-axis) 

Design parameters are defined by Nam Suh [9] as the key physical variables in the physical 
domain that characterise the design that satisfies the specified functional requirements. The 
performance of the design is characterised by performance parameters, derived from the 
design parameters by considering the design subject to some operating regime. The 
relationship between design parameters and performance parameters may be considered to be 
modelled by some form of transfer function(s). Variability and uncertainties in this 
relationship can be found in the design parameters (e.g. dimensional or material properties), in 
the characterisation of the operating regime (the load cases) and in the transfer function itself 
[10]. Models used in the mapping are approximations to real world systems, in which there 
are conditional assumptions, limited available data or incomplete knowledge [11]. Therefore, 
uncertainty in both design parameters and transfer functions is reflected in the performance 
parameters, which are used to qualify performance of a design against the specified values of 
the design targets or functional requirements in the design process [12]. The presence of 
uncertainty in virtual performance parameters reduces confidence in simulation predictions, 
and introduces risks in decisions based upon them. 

A classification of performance parameters according to the completeness of the data used to 
describe them has been devised. The scale progresses from the limited data contained in a 
single deterministic value to the increasing completeness or precision of a Probability 
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Distribution Function (PDF), as shown in Figure 1. The definition for each scale position in 
the i-axis is: 

1. ‘Deterministic’ means the output of a transfer function is only available for a single value 
(or set of values), obtained by propagating a nominal set of design parameters through the 
function. 

2. ‘Interval value’ means the output of a transfer function is available as intervals with no 
information of the likelihood of occurrence except for the absolute lower and upper 
bounds. 

3. ‘PDF’ means the output of a transfer function is described probabilistically. The normal 
distribution is supposed here due to its wide use in engineering. 

3.2 Evidence (j-axis) 

Evidence regarding the performance and uncertainty in analytical models is typically gathered 
from in-service product behaviour, failure records, prototype tests and correlation analyses for 
similar but not necessary identical products. The sources of evidence available in correlation 
can be distinguished as primary and the secondary sources according to their correspondence 
with the analysis [13]. In general, the primary evidence provides a direct correlation between 
modelling results and experimental measurements for an engineering product leading to the 
highest confidence for validation purposes. Where primary evidence is not available, the 

secondary evidence or indirect evidence may have to be sourced from experience with the 
performance of similar products in similar service conditions. Using this type of evidence 
involves some decision-making in justifying its confidence and reliability. Some examples of 
secondary evidence are: 

• Evidence of performance of similar techniques for similar models – e.g. generic 
confidence in Computational Fluid Dynamics models or the NAFEMS technical 
benchmark [14] used to draw conclusions about the current numerical model. 

• Evidence of satisfactory/unsatisfactory performance of similar but not identical artefacts – 
e.g. in-service or historical evidence of satisfactory or unsatisfactory performance of 
artefacts. 

• Evidence of performance of parts of the more complex process – e.g. stress analysis as 
part of a fatigue model. 

• Results from other validated models – e.g. verification of results from a new method with 
conventional solutions. 

Correlations and validation of simulation results against experimental test data can be 
complicated by the lack of evidence due to resource constraints and difficulty in obtaining real 
life data, but in some cases there may be abundance of evidence for engineers to draw 
correlations against. Therefore, evidence of varying degrees may exist for correlations and 
used in validation to justify the confidence in design analysis [15]. A scale for classifying the 
availability of validation evidence has been defined as follows: 

1. ‘Single’ observation – validation evidence is available for a single observation only, for 
example from a prototype test. 

2. ‘Range’ of observations – validation evidence is available for a small number of 
observations, but no inference on likelihood could be drawn from these observations 
except for the absolute bounds. 
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3. ‘Statistical’ set of observations – most likely to be collected from a large batch of 
artefacts in service providing a reliable source of evidence. 

3.3 Design space (k-axis) 

The design space is a feasible region for several parameterisations of the design parameters 
for a product (as in parametric or variant design). For example bearings of various sizes, and 
load capabilities may be produced for a single design principle. Both analysis and evidence 
about product performance may exist for a single set of product parameters (e.g. fatigue life of 
a particular bearing geometry), or more extensively for a wide range of parameters in the 
feasible design space (e.g. fatigue life for many similar bearings of different sizes). For state-
of-the-art systems, analyses and tests for each performance parameter may have been 
conducted only for a specific product. In more common engineering products, however, 
several variants often exist and the same type of analytical procedures and tests may have 
been conducted for verifying the behaviour of a family of product variants. The latter enables 
the comparisons of predicted results with experimental data for more parametric cases to 
evaluate the model performance in the design space. The classification proposed categorises 
the design space into three main groups: 

1. ‘One’ means the correlation of performance parameter and evidence is only available for a 
single parameterisation of a product.  

2. ‘Small number’ means the correlation of performance parameter and evidence is 
available for a few parameterisations of a product/variants to suggest the correlation 
within a limited range of parameters in the feasible design space.  

3. ‘Large number’ means the correlation of performance parameter and evidence exists for 
a relatively large number of parameterisations of a product to suggest the general 
confidence of analytical methods in the feasible design space.  

This definition of design space allows for new and variant or adaptive designs to be 
distinguished – the scales correspond to the extent of knowledge available for product 
evaluation as determined by the number of prior variants designed. 

The method of classification proposed intends to cover diverse situations in engineering 
validation. For example, in cases where the collection of experimental evidence on the 
behaviour of the whole artefact is prohibited by cost or difficulty in obtaining real data (e.g. 
reliability of nuclear plant), engineers typically resort to extensive use of secondary evidence 
combined with highly conservative design strategies. In complex analysis cases, deterministic 
analysis may be carried out but a large amount of physical evidence may be collected to 
qualify the design targets and reliability. For well-established design principles and extensive 
field experience it may be possible to undertake fully probabilistic analysis. To substantiate 
and populate the classification in the framework, various cases from different design domains 
have been collected and are presented next.  

4. Supporting cases 

Twenty cases from the literature have been collected and two more extensive case studies 
have been conducted by the authors [16, 17] to substantiate and populate the (i, j, k) 
coordinate system shown in Figure 1. Although the number of cases represents a substantial 
population size, it only represents a partial population of the 48 coordinates (4 x 4 x 3) in the 
classification. Summaries of the literature cases and references to them are documented in 
[18] with relevant information to this paper given briefly in Table 1. These cases are used to  
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Table 1 Illustration of case studies and literature cases 

Analysis Evidence Design 
Space Case 

No. 
Case 
description 

Performance 
parameter Transfer function 

0 1 2 3 0 1 2 3 1 2 3 

[16] Suspension 
dynamics 

Average and range 
vertical top mount 
force 

Equations of motion 
Multi-body 
dynamics 

   �  �   �   

[17] Shrink-fit 
subject to torsion 

Contact pressure 
Holding torque 

Stress analysis 
Contact mechanics    �    � �   

1 Failure of 
bonded joint 

Fracture strength 
Material strength 

Fracture mechanism 
Material behaviour    � �    �   

2 Solenoid torque Stress rupture torque 
Torque at loosening 

Material failure 
Loosening criterion    � �    �   

3 (a) �     �   �   
3 (b) �      �  �   
3 (c) 

Reliability 
handbook data Failure rates Failure mechanisms 

�       � �   

4 Heat sinks 
performance 

Thermal resistance 
Pressure drop 

Fluids mechanics 
Heat transfer  �    �   �   

5 Die surface 
press.distribution Pressure Upsetting process  �    �    �  

6 Static failure 
theories Combined stress Static material 

failure  �    �     � 

7 (a)  �    �   �   
7 (b) 

Fatigue life of 
steering knuckle Fatigue life cycle Fatigue failure 

 �     �  �   

8 Brake design Torque due to friction Force and moment 
balance   �   �   �   

9 (a)  �    �    � � 
9 (b) 

Safety factor Structural strengths Failure limits 
 �     �   � � 

10 Pitting of gear Number of cycle to 
pitting 

Fracture mechanics 
(contact)  �      � �   

11 (a)    �  �    �  
11 (b) 

Sheet metal 
flanging Springback angle Flanging process 

   �   �  �   

12 Structural 
analysis Displacement Structural reliability   �    �  �   

13 Rupture of 
steering knuckle Rupture velocity Brittle rupture   �    �  �   

14 Shot peening life 
increase Fatigue life Residual stress in 

shot peening process   �     � �   

15 Residual stress 
in quenching 

Surface axial residual 
stress Quenching process   �     � �   

16 (a)   �     �   � 
16 (b) 

Tolerance stack 
analysis Assembly tolerance Geometry 

   �    �   � 

17 Buckling of cyl. 
shells Buckling limit load Structural buckling    �    � �   

18 Bearing failures Bearing life Failure mechanisms    �    � �   

19 Fatigue crack 
growth Fatigue life Fatigue crack 

growth    �    � �   

20 
Residual stress 
and fracture 
toughness 

Fracture toughness 
Residual stress 
influence on fracture 
toughness 

   �    �  �  
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illustrate the rationale for the development of suitable error function for each of the categories 
they represent. The cases collected however, do not intend to provide the current state-of-the-
art in each branch of the study involved, although some sectors of industry do tend to collect 
more statistical data and perform probabilistic design more than others. 

5. Error functions 

From the evaluation of the requirements for uncertainty characterisation, a method for 
representing the disparity between simulation results and experimental observations via error 
functions is developed next. The requirement for the error function is to record uncertainty 
information from existing systems and to propagate the error characterisation for use in future 
design applications to assist decision-making and to improve simulation results. From the 
various combinations of model, data and the extent of available evidence, it is proposed that it 
may be possible to identify an error function for each load case, design target or failure mode 
using: 

Evidence = Transfer function Θ Error function    (1) 

where  Θ = addition and/or multiplication.  

The addition or multiplication operations allow for correction of the predicted response from 
the transfer function to better reflect the reality. Similar formulations have been mentioned by 
[19] in what was termed an ‘adjustment factor approach’. According to the authors, the 
adjustment factor may assume a hypothetical PDF reflecting the model prediction uncertainty. 
The approach however, seemed to have been adopted in an ad hoc manner in risk analysis.  

5.1 Formulation of error functions 

The classification in the framework leads to several categories of correlation cases as 
summarised in Table 2. This classification may be used to identify the most appropriate 
method for handling uncertainty in the design simulation including Fuzzy set theory, interval 
analysis and probabilistic methods. Suitable error functions may be formulated for each 
category using purely conventional uncertainty theories, or a combination of these. Figure 2 
illustrates two distinct classes, unhatched (A, D, F) – correlations between parameters 
characterised by pure uncertainty theories (probabilistic method, interval analysis, Fuzzy set) 
and hatched (B, C, E) – correlations that require a combination of uncertainty theories to 
formulate an error function. Even though the mathematics within a pure uncertainty theory is 
well established, research in dealing with a combination of different uncertainty theories is 
less mature [20]. In this paper the consistency principle, a generally accepted relationship 
between the probability and the possibility axioms, is adopted for the transformation of data of 
varying precision for the development of error functions in the combination categories (B, C, 
E). This principle states that the degree of possibility of an event is greater or equal to its 
degree of probability [21], which is given by an inequality relationship: 

( )
( )� ��

�

�
��
�

�
≤

∈A Ax x
x

dxxp
µ

µ
 max

max)(      (2) 

where  p(x) = probability distribution  

 µ(x) = Fuzzy membership function. 
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Table 2 Categories of correlation between analysis and experiment results (i - performance parameter, j - 
physical evidence and k - design space) 

Cate-
gory Graphical representation Cate-

gory Graphical representation 

A 
 

 
(1, 1, k) – The performance 

parameter is characterised by 
deterministic data and the 

experimental evidence by a 
single value. 

B 

 
i. (1, 2, k) – The performance 

parameter is characterised by 
deterministic data and the 

experimental evidence by a 
range of values. 

ii. (2, 1, k) – The performance 
parameter is characterised by 

interval value and the 
experimental evidence by a 

single value. 

C 

 
i. (1, 3, k) – The performance 

parameter is characterised 
by deterministic data and 
the experimental evidence 

by statistical data. 

ii. (3, 1, k) – The performance 
parameter is characterised 
by distribution function 

and the experimental 
evidence by a single value. 

D 
 

 
(2, 2, k) – The performance 

parameter is characterised by 
interval value and the experimental 

evidence by a range of values. 

E 

 
i. (2, 3, k) – The performance 

parameter is characterised 
by interval value and the 
experimental evidence by 

statistical data. 

ii. (3, 2, k) – The performance 
parameter is characterised 
by distribution function 

and the experimental 
evidence by a range of 

values. 

F 
 

 
(3, 3, k) – The performance 

parameter is characterised by a 
distribution function and the 

experimental evidence by statistical 
data. 
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Figure 2 Precision of error functions and the progression of confidence 

The possibility distribution, ∏(x) that optimises the information content [22] obtained from 
this transformation encodes the family of confidence intervals around the mode of the 
probability distribution, p(x), i.e. the α-cut of ∏(x) is the (1 - α) confidence interval of p(x) 
[23].  

A pragmatic method for recording uncertainty information is proposed by separating the first 
and second moments of data to capture the systematic and random aspects of uncertainties for 
existing systems in correlation with evidence. In statistical terms, the first moment of a sample 
of data is the central tendency (or mean), and the difference between the means of the actual 
and predicted performance parameters is the systematic or bias uncertainty measure, ϕ. The 
second moment of data is the measure of dispersion (or variance), and the difference between 
the variances of the actual and predicted performance parameters is the random uncertainty 
measure, ε. The error functions can be defined as: 

EF (ϕ, ε) = f(φreal, φTF, δreal, δTF) 
( )

�
	



=
φφ−φ=

TFreal

2

TFTFreal

1

/���:EF
/�:EF

    (3) 

where EF1 denotes the error function accounting for systematic discrepancy  

EF2 denotes the error function accounting for random discrepancy 

φreal = first moment of the observed performance parameter  

φTF = first moment of the predicted performance parameter 

 δreal = second moment of the observed performance parameter 

 δTF = second moment of the predicted performance parameter. 

The development of error functions presently is based on the assumption of symmetric data 
and that, for a deterministic parameter, a suitable Fuzzy number may be elicited from experts. 
This definition of systematic and random uncertainty measures can be extended to cases 
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described by Fuzzy and interval numbers, by denoting the first and second moments of data 
with their equivalent parameters, e.g. φ = average and δ = range of an interval number.  

Separation of aleatory and epistemic uncertainty has been widely recognised [24, 25] but little 
work is seen in mitigating both types of uncertainties in simulation-based design 
environments [26]. It is envisaged that the isolation of systematic and random uncertainties 
will better represent epistemic uncertainty and stochastic variability arising from simulation 
processes. This characterisation is also to be found more suitable to allow incorporation of 
uncertainty characterisation into the modelling of future engineering processes [18]. Although 
the error functions will not correct for uncertainty with absolute accuracy, they are potentially 
useful to give insights to the accuracy of the data and models used in simulation procedures 
for variant design applications. The uncertainty measures in error functions can be applied in 
the next variant via: 

φreal = φTF (1+ ϕ)       (4) 

δreal = δTF * ε       (5) 

where ϕ = systematic uncertainty measure 

 ε = random uncertainty measure. 

The error functions support uncertainty characterisation by indicating the discrepancies in 
modelling and observed results, aiding the assessment of confidence in data and model 
representations for an analysis procedure. For example, the systematic uncertainty measure, ϕ, 
may be used to judge if a modelling approach is consistently over (ϕ<0) or under-estimating 
(ϕ>0) the actual behaviour or performance parameter of interest. Accuracy in alternative 
models may be compared and over-conservatism resulting in uneconomic designs can be 
avoided. A value close to zero for ϕ indicates less bias uncertainty, therefore the model 
correctly predicts the actual performance parameter. The random uncertainty measure, ε, may 
have significant influence on the accuracy of results, especially for performance criteria that 
are sensitive to dispersion, e.g. probability of failure. Under-estimation of variability (ε>1) in 
this case will cause higher than expected number of product failures, whereas over-estimation 
of variability (ε<1) may cause designers to specify tighter specifications, e.g. manufacturing 
tolerances or material strength that results in extra cost and weight. A value close to unity for 
ε indicates less random uncertainty.  

5.2 Suitability to design applications 

Uncertainty characterisation using error functions is most suited to the third scale in the 
design space classification in the framework (k = 3) – i.e. design with a large number of 
variants in the design space where products are adapted from existing ones over many 
iterations. This is because the quality and quantity of data required for accurate modelling is 
acquired through several iterations and including at least one model or prototype test. This 
type of information is typically available in variant and adaptive design [5, 27]. Since these 
design types constitute about 80 % of engineering products [7], many companies can benefit 
from better utilisation of information and knowledge through prototype tests or lessons learnt 
from past failures. The extensive experience and knowledge accumulated from a large number 
of design variants could allow for very useful inference of the accuracy of modelling or 
simulation techniques to build up a reliable knowledge-based system. The error functions can 
be stored along with the data, model and load cases, and could be retrieved for reuse in a 
similar design case. The feasibility of such a system using a knowledge repository for an 
engineering model has been investigated by other researchers [8]. 
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5.3 Improving confidence in design simulations 

The precision in error functions developed according to the classification in the framework 
can be used to judge confidence in correlations between analysis performance parameter and 
evidence. For instance, a scale (graduated shades) for confidence related to the precision in 
error functions is indicated in Figure 2. The density of shading is an indication of the 
completeness of data describing the analysis performance parameters and evidence. The 
precision (and confidence) in an error function does not however, imply that the actual 
response is accurately predicted. For instance, the error functions obtained from correlation 
between probabilistic parameters (Category F) are precise but accuracy in the modelling may 
be low due to large systematic errors between the modelling results and evidence. The error 
functions may be used to identify critical areas and to optimise allocation of resources to 
reduce errors – to select more suitable design representations, to focus effort in data collation, 
and to select suitable design techniques by indicating relative measures of uncertainty and 
confidence among the available alternatives. For instance, in situations where the bias 
uncertainty is significantly larger than the random uncertainty, i.e. ϕ >> ε, a deterministic 
analysis and a scalar valued error function may suffice until more detailed model with higher 
accuracy can be justified. In this manner, error functions provide a mechanism to estimate the 
risks and uncertainties inherent in an application of analysis/simulation and to assess the 
adequacy of simulations in replacement of prototype tests in order to focus engineering effort 
to progress confidence in simulation-based design.  

The probabilistic method is by far the most appropriate to represent uncertainty in engineering 
simulations due to its suitability to propagate numerical and objective uncertainty information 
[28]. Ideally, the design process should progress diagonally upwards through design iterations 
as design data becomes more complete, i.e. from deterministic to probabilistic values as more 
information is gathered. Similarly, the error representation through error functions will also 
evolve from imprecise possibility to precise probability but there is an increasing intensity of 
resource and effort needed to achieve improved precision as shown in Figure 2. The collection 
of data and evidence will be inevitably limited by design constraints and business pressures in 
reality. The framework provides a roadmap to identify a progression from current state of data 
and model representations to achieve the most desired state (Category F) in order to attain 
confidence in design simulations. The framework and error functions will be illustrated next 
for a case study conducted in collaboration with an automotive company.  

6. Case study 

A case study on the suspension dynamics of a sports utility vehicle [16] was conducted to 
compare analytical and experimental value of loads transferred onto the chassis to gain an 
understanding of the systematic and variance errors arising from various data and model 
representations. The collaborating company was interested to establish the influence of 
statistical variability in component dimensions, properties and assembly factors onto the 
estimated loads from simulations, as well as the confidence in these predictions. In particular, 
if the company can establish sufficient confidence in simulation-based design, intermediate 
prototypes can be reduced (especially in non-critical areas) thus saving product development 
time and cost. The correlation assessed from the current system is then used to judge the 
potential accuracy of modelling predictions for the estimation of load transfer in early design 
stage of a variant vehicle where experimentally measured response is not available. The 
characteristics relating to the framework and error functions for this case study are now 
established. 
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Classification 

Performance parameters – the average and range of vertical top mount force were predicted 
from two models, where: 

• Design parameters were suspension component properties, with their statistical variations 
first assumed from published data and specifications, then improved with data measured 
from tests conducted. 

• Transfer functions were available to provide an analytical relationship between the design 
parameters and performance parameter of the function: 

a. Computational model – ADAMS model (37 degree of freedom) 

b. Analytical model – simplified model (1 degree of freedom). 

Performance parameters from various data sets and models were described by normal PDFs, 
providing a probabilistic description of its variability. This corresponds to i = 3 in the scale for 
performance parameter. 

Evidence for the top mount force was derived from a load history measured from a laboratory 
test on a prototype vehicle. Experimental or test evidence exists for the performance 
parameters from a single vehicle, but the actual properties (design parameters) of this test 
system is unknown. Testing requires very expensive hardware and data acquisition systems 
that typically cost automotive companies millions of dollars of investment per car tested and 
take months to set up. Evidence for this case study was only available from a single vehicle, 
corresponding to j = 1 in the scale for evidence. 

The design space for this case study contains only one correlation case for a specific 
suspension system design, but the collaborating company will have collected vast experience 
from designing variants of the vehicle type. However, the design space considered in this case 
study involved only one suspension variant, therefore implying k = 1 in the scale for design 
space. 

Error functions 

The mathematical formulation of error functions for category C from Table 2 has been applied 
to this case study. The error functions required a combination of a Fuzzy number (fitted to the 
singly available evidence) and a normal PDF, and were developed based on the consistency 
principle (Eq. 2). Error functions formulated for various models and data sets for the 
prediction of top mount force indicated varying degree of systematic and random uncertainties 
associated with them. The route for the development of confidence in simulation is to follow 
the path from C-E-F, which requires the company to collect more evidence regarding the 
performance of more similar systems to enable more precise characterisation of error. A 
systematic documentation of evidence collected over many design variants such as that 
proposed in the framework is suggested to assist the company to build a more robust and 
reliable simulation-based design environment.  

7. Conclusions 

A framework for the systematic organisation of understanding of uncertainties in product 
development and in simulation procedures has been presented and substantiated with 22 case 
studies from different design domains, involving varying degrees of uncertainty in the 
simulation data and varying quantities of evidence from test or service performance. A 
classification is devised based on the organisation of knowledge regarding the disparity 
between analytical and experimental evidence, and this classification is used to identify the 
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most appropriate method for the representations of error. The incorporation of error functions 
into the modelling of variant design processes is suggested to aid analysis strategy and to 
identify the progression of confidence to achieve reliable virtual product evaluations. The 
improvement of confidence in simulation-based design environments through management of 
knowledge gained from previous design activities and from in-service experience with 
products will aid decision-making in future design applications. 
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