
ICED’07/494 1

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED’07
28 - 31 AUGUST 2007, CITE DES SCIENCES ET DE L'INDUSTRIE, PARIS, FRANCE

COMBINING CONSTRAINT SATISFACTION AND
NON-LINEAR OPTIMIZATION TO ENABLE
CONFIGURATION DRIVEN DESIGN
Srikanth Devanathan1 and Karthik Ramani1
1Purdue Research and Education Center for Information Sciences in Engineering, Purdue
University

ABSTRACT
Product design is inherently a creative process. The designer synthesizes various embodiments

of an idea to satisfy constraints and meet customer requirements. In current product design
environment, the actual implications of design modifications at the embodiment stage are not clearly
understood until the detailed design is completed. This situation presents us with challenges such as
representation of the embodiment and its subsequent use in an opportunistic manner for reuse of past
knowledge.

In this paper, we model embodiment design as a generalization of the product configuration
problem. Product configuration is defined as the process of obtaining valid design instances of a
particular product, given its embodiment. Product configuration methods, presented here, aspire to
quickly complete important aspects of detailed design of predefined product concepts to provide the
designer with performance and design information (configuration solution) to evaluate a particular
embodiment. This allows the designer to explore various “what-if” scenarios at the embodiment
design stage. Design optimization plays a crucial role in detailed design while constraint-processing
techniques dominate product configuration. In this paper, we describe a configuration driven design
framework that allows the interplay of optimizers and configurators. The method presented is
explained using the case of an automotive cooling circuit.

Keywords: Configuration design, optimization, constraint satisfaction

1 INTRODUCTION AND MOTIVATION
The design process is an iterative map from the customer requirements to the final design of

the product [1]. The various elements of a product design are instantiated with minimal conflict during
the design process. Function, geometry, behavior, architecture and parameters are some elements of
the product design [2]. These elements vary considerably in their brevity. For example, function and
behavior are abstract in their description whereas parameters and geometry can be expressed in
considerable detail. Further, there exists a definite sequence in which product elements are qualified
and instantiated during design to achieve desired objective. For example, geometric parameters can be
identified only after a general description of the form of the product. Similarly, performance
parameters can be quantified after the behavior is qualified with simulation or testing.

Typical tasks in concept design include functional decomposition, concept selection and
synthesis [3]. The product architecture is then designed in the embodiment design stage. During the
detailed design stage that follows, elements such as form, manufacturing process and behavior are
instantiated. Optimizations are performed in the later phases of the detailed design stage. Optimization
of parameter values plays a crucial role in the design process.

Product re-design can be understood as modifications to the elements described above.
Moreover, products are re-designed more often than the design of a new product. Therefore, emphasis
is placed on techniques that enable re-use and facilitate re-design. Moreover, any new design can be
considered a combination of previous designs in a new way. For example, up to 80% of a satellite, a
one-of-a-kind-product is designed based on standard components and predefined configurations [4].
Typically, re-designs are achieved through:
1. Modifications to the product architecture: Changes in functional decomposition of the product

ICED’07/494 2

can result in modifications to the product architecture. Modifications to the decomposition of
the product are caused due to: Change in functional requirement; Combining functions of
separate modules into a single module (aggregation); Separating function of a single module
into multiple modules (disaggregation)

2. Modifications of form, manufacturing process and performance within the same architecture:
This kind of modification may result in introduction of new parameters and changes to the
values of certain other parameters.

3. Granular modifications: These are usually small modifications to the values of parameters to
improve performance without considerable change to the form or architecture of the product.
For example, the changes in the set-up of a racing vehicle according to racing conditions can be
considered as granular modifications.

Soininen et al. [5] define the task configuration as “the problem of designing a product using a set of
pre-defined components while taking into account a set of restrictions on how the components can be
combined”. Majority of product configurators are currently used to support sales and quotation tasks
using pre-designed components [5]. Product configurator is a powerful tool that can also be used to
support the designer during the embodiment design. However, in order to apply product confgurators
in a product design scenario, we need to consider the component not as a pre-defined element but as
one that represents a family of variants or its product space. In a re-design that involves changes to the
product architecture, a configurator can be used to identify variant class or concept for each node in
the new architecture. The detailed design of the components, i.e. the choice of the individual variant,
then completes the design. Furthermore, if the variant class is described in a finite form a priori, then
the design of the variant can also be automated. In this paper, we report our preliminary work in
developing a framework for supporting such a design process, called configuration driven design
(CoDD). The overall objective of the framework is shown in Figure 1. The scheme produced in
conceptual design is refined using concepts and constraints resulting in a new concept model. The
subsequent configuration of the concept model for a given specification produces a valid product
instance. This concept model is also stored for later reuse.

Figure 1: Overall objective of the configuration driven design framework

The following sections deal with the formulation of the embodiment design problem, the model
for capturing the design knowledge necessary for configuration and preliminary methods for variant
selection.
We propose a configuration driven design framework that
1. Models product configuration involving a generalization of constraint satisfaction and

optimization problems.
2. Captures the product space using a constraint based model and allows reuse through

configuration.
3. Configures a product using a combination of constraint satisfaction and optimization

algorithms.
4. Automatically formulates the design problem based on given specifications, thereby providing

flexibility.
Engine air-cooling circuit is introduce as an example in section 3.1.3 to illustrate the use of the
concept model in configuration driven design.

2 CONFIGURATION DRIVEN DESIGN

2.1 A model of the design process
Product design processes can be classified into two fundamental types: new design and routine

design. In the case of new design, the design commences with a set of functions that are to be satisfied

Concept Hierarchy

Refine/select Scheme

Constraints/
Parameters

Add

Scheme/Concept

Concept
Model

Add

Configure Instance

Specifications

Architecting
Product configuration Conceptual

Design

ICED’07/494 3

by the product. These overall functions are decomposed into simpler functions or the working
principle. For example, for an “excavator” the function “lift dirt and load onto a truck” can be
decomposed into “pick dirt”, “hold dirt”, “lift dirt”, “move dirt”, etc. The designer then identifies a set
of concepts that perform a combination of the functions. For example, “pick and hold dirt” can be
combined and performed by the concept of “bucket”. Depending upon the complexity of the
interactions between functions, the decomposition results in a modular or integral structure. Many
representations such as paradigm model [6] and systematic model [7, 8] have been suggested in the
literature to capture the functional as well as the structural information. Typically, multiple
alternatives are generated in which a small set is explored in detail. The initial representation of the
structural information along with the engineering specifications is called scheme [9]. The structural
elements in the scheme can be thought of as the sub-systems in the product. The actual embodiment of
the sub-systems, and therefore the system, is not yet fully known. For example, “bucket”, “actuator”,
etc. form the sub-systems for an excavator.

The functional as well as engineering requirements on the sub-systems are used in the design
of that sub-system (by repeating a similar procedure for the sub-system, and so on). This process,
called architecting [10] results in the creation of the physical architecture of the product. Hierarchical
refinement [11] is a common way of architecting a product. In most design cases, the structural
elements (at some level in recurrence) are easily identifiable sub-systems that can be incorporated by
routine design using existing knowledge. The embodiment design typically overlaps with the
architecting process. During the architecting process, the designer narrows (or qualifies) the type of
concept used in the design. In the context of configuration, Sebastian [12] defines innovative design as
a special case where some of the instances are unknown. Figure 2 shows an example path that the
designer of an excavator might take; the thick solid lines indicate the selection of concepts while the
thick dashed-lines represent product configuration. A definite classification exists in the concepts that
are considered by the designer. Figure 2 also shows this classification hierarchy, for an “actuator”.
Here, “24V Sol.1” and “24V Sol.2” are instances of “24VDC Solenoid”, therefore, lie within the
product space. To move down this tree, the designer selects the next node based on perceived
attributes such as function, capabilities, behavior, performance, reliability, cost and other
requirements. The number of such selections depends on whether the design is a new or a routine
design; routine design involves fewer such decisions than new design.

Figure 2: Hierarchy of "Actuator" concepts; The concept model implicitly defines the product
space. Product configuration in CoDD is the selection of an instance from the product space.

ICED’07/494 4

In configuration driven design framework, each concept in the hierarchy is associated with the
notion of the product space. The design product space consists of the design space and performance
space [13]. The product spaces of the concepts that are lower in hierarchy can be defined with higher
precision than those concepts that are higher up. The product space can be represented either explicitly
or implicitly. The product space can be explicitly defined by enumerating all possible products. The
product space is implicitly defined through constraints, parameters, architecture and domains. In the
CoDD framework, the information describing the product space and the knowledge associated with
the concept are captured in the concept model (see section 3.1.1). The selection of a particular concept
modifies the architecture of the product. For example, the selection of a “hydraulic actuator”
necessitates the addition of sub-systems such as “hydraulic pump” and “hydraulic control”. Further,
each selection adds restrictions on other sub-systems in the product. These restrictions are stored in the
model of the product in the form of constraints. When the concepts for all the elements in the
architecture are selected and the compatibility and other functional constraints are specified, this
model is the concept model for the new product concept. The detailed design problem is the
instantiation of the various concepts and parameters within this concept without violating any
constraint.

The configuration driven design framework is being developed to handle the following issues that
arise during such a design process: supporting functional as well as geometric constraints; both
continuous and discrete variables/parameters; provision for design optimization and other simulation
based design methods.

In general, the steps involved in CoDD are:
1. A priori creation of concept model design representation of existing embodiments; this

representation is stored in a database to support reuse (See section 5, Future Work). The notion of
product space extends across product architecture, i.e., the product space of a system involves the
product spaces of some its sub-systems. For standard products such as “bolts” the product space is
a collection of discrete points; each point corresponds to a specific instance. The product space is
characterized by the concept model associated with it. The product space is nested within larger
product spaces through concept models composed of other concept models within it. A concept of
“solenoid valve” consists of the concepts “solenoid” and “valve”; the product space of the
“solenoid-operated valve” is composed of the product spaces of “solenoid” and “valve”.

2. Composition of a new design or modification of an existing embodiment through refinement and
concept selection. This step is the crucial step in an innovative design. The designer architects the
product completely with concept models, assigns constraints and objectives to the model.

3. The selection of a particular product instance based on the objectives and requirements: The
designer provides the engineering specifications and uses the concept model to select an instance
from the product space. It is typical to involve simulation based design strategies in arriving at an
instance.

2.2 Related Work
The focus of the present work is in modeling of a product space using constraints and its

subsequent use in configuration. In the context of configuration design of complex products,
Feldkamp et al. [14] have proposed a method and software tool, called SyDeR, that combines
structural model, a taxonomy based library of solutions, and, constraint propagation techniques. The
notion of ports is used to encapsulate and model the hierarchical nature of the system being designed.
Each port has a predefined direction (either “in” or “out”) under SyDeR. The systems being designed
are classified as system types which are organized in an inheritance called system taxonomy. This
modeling approach is extended in the CoDD framework to include functional (numerical) constraints
within concept models; CoDD also provides flexibility in using any interface parameter in any
direction.

Pahng et al. [15] have proposed a distributed object-based modeling and evaluation (DOME)
framework which uses modules to represent the product design problem. The design problem is
modeled as an aggregation of sub-problems. In the context of DOME, the set of services provided by a
module is called an interface. Modules that have a common set of services can be interchanged to
explore various configuration alternatives. The direction of each interface is also fixed a priori in
DOME. The emphasis is placed on modeling the product rather than techniques for designing or
configuring such products.

ICED’07/494 5

In the knowledge aided engineering tool for racing car design, Susca et at. [16] present a
model of the system (car) and a coupled solver allowing a designer to quickly evaluate the properties
of a car. The independent variables are defined explicitly and the user interface present allows the
designer to explore the design by changing these independent variables.
Other systems such as design catalogs [17] have been proposed to store and reuse design models, and
also to generate simulation models automatically. Research in design catalogs has mainly consisted of
representation and retrieval methods. A Self-configuring component approach [18] has also been
proposed to facilitate reusable models in configuration.

3 EMBODIMENT DESIGN PROBLEM

3.1 Design knowledge representation
A general design scenario involves many designers across various economic units such as

suppliers and customers. The design tasks are often distributed across the supply chain of the product
[19]; the OEM (customer) being in charge of the integration and design of the overall system, while
the immediate suppliers providing designs for their respective sub-systems. An important factor in
modeling such a relationship is the encapsulation of internal design knowledge while providing
flexibility and efficient designs to the “customer”. The CoDD framework uses interfaces to provide
access to the design parameters through which specifications and performance information are
communicated. In general, the interface of a concept is the set of design variables that is exposed (by
the designer) to other concepts.

3.1.1 Concept model
The embodiment knowledge of a product, called a concept, is abstracted into a model to

facilitate product configuration. This concept model contains, among others, the product architecture
(Φ), compatibility & design constraints (C), concept parameters (P), objectives (F), maps (M) and its
interface (I). In the product architecture, the concepts (primitives and variant classes) that constitute a
particular concept are called its sub-concepts. Figure 3 shows the UML representation of the concept.
The sub-concepts are stored as a set of identifiers for the primitives and the variant classes that
constitute the concept.

In this implementation, we distinguish two kinds of parameters: geometric and functional.
Geometric parameters are associated with the form definition of the concept, typically a 3D Computer
Aided Design (CAD) file. Functional parameters are parameters that indicate or, in other cases, control
the performance of the concept. Three kinds of parameters are available in the current implementation
of the CoDD system – scalar, aggregate and reference. Scalar parameters can be of type Integer, Real
or String. Aggregate parameters are collection of other parameters. In the current implementation, a
concept can also be viewed as an aggregate parameter. Reference parameters “point to” other
parameters, and are used to incorporate an interface parameter of a sub-concept with the concept
parameters. The interface parameters are a subset of the concept parameters. Compatibility and
performance constraints are expressed through the interface parameters of the sub-concepts.

The concept topology indicates the relationships between the sub-concepts. The product
topology can be represented as a hyper-graph, called the concept graph. The hyper-arcs in the concept
graph represent the compatibility constraints between the sub-concepts. The relationships between the
parameters are captured through maps. Maps can be understood as generalization of design equations.
The maps analytically capture the functional knowledge [20] of the product concept. A map is
associated with dependent and independent parameters. The values of the dependent parameters are
evaluated by evaluating the map with the values of the independent parameters. Maps, in general,
involve algorithmic evaluations such as structural analysis, or tasks involving humans. Further, maps
may involve concurrent analyses across multiple domains. In this implementation, we only consider
maps that are either evaluated through expressions or by external analysis software. For example, a
map involving finite element analysis can be used to evaluate the parameters “maximum_stress” and
“deflection" for a structural concept. The maps in a concept can be visually represented as a directed
bipartite graph <Parameters, Maps> as shown in Figure 5. An edge (p,m) between the parameter p and
map m indicates that p is an independent parameter in the map m, while the edge (m,p) indicates that
the parameter p is a dependent parameter in the map. The concept information is provided to the
CoDD system in an XML format.

ICED’07/494 6

<?xml version="1.0"?>
 <concept modelid = “solenoid_valve_1” isa=“hydraulic control” name = “Solenoid Valve”>
 <subconcepts>
 <subconcept modelid = “DC_Solenoid_Model_!” isa = “DC Solenoid”> Solenoid </subconcept>
 <subconcept modelid = “2_way_Valve_1” isa = “2 way valve”> Valve </subconcept>
 </subconcepts>
 <parameters>
 <parameter visibility = “public” dispname = “Voltage (V)” datatype = “real” references =
“Solenoid.OprVoltage” default = “12”> Voltage </parameter>
 <parameter visibility = “public” dispname = “Current (A)” datatype = “real” references =
“Solenoid.MaxCurrent” default = “2”> Current </parameter>
 <parameter visibility = “public” dispname = “Minimum Flow Rate (l/s)” datatype = “real” default = “0”>
MinFlowRate </parameter>
 <parameter dispname = “Solenoid Force” datatype = “real” references = “Solenoid.F_avg” default = “0”>
Force </parameter>
 <parameter visibility = “public” dispname = “Maximum Flow Rate (l/s)” datatype = “real” default = “1”>
MaxFlowRate </parameter>
 <parameter visibility = “public” dispname = “Pressure Drop (Psi)” datatype = “real” default = “12”>
PressDrop </parameter>
 <parameter dispname = “Maximum Flow Rate (l/s)” datatype = “real” default = “1”> MaxFlowRate
</parameter>
...
 </parameters>
 <constraints>
 <constraint dispname = “Force compatibility”> CDATA[! Solenoid.MinForce > Valve.MaxForce !]
</constraint>
 <constraint dispname = “Valve leakage”> CDATA[! Valve.Leakage < 3!] </constraint>
 ...
 </constraints>
 <maps>
 <map dispname = “Length Calculation” type = “algebraic”>CDATA[! Length := Solenoid.Length+Valve.Length
!] </map>
 <map dispname = “Response Time Calc” type = “simulation”>CDATA[!SimCode MATLAB /
InputFiles trans / FileDescription transcalc.m / FileType: standard / Instructions / require
Solenoid_Force / require ValveSpringStiffness
 SimCodeProcess MATLAB /Program: "./MatlabR11.exe"/ReturnCodes: 1/ End SimCodeProcess ProE / End
SimCode ProE!] </map>
 ...
 </maps>
</concept>

Figure 4: XML based concept representation of "Solenoid Valve" used in cooling circuit example

While a concept model defines the variant family of that concept, a variant is chosen based on
a specification. The specification consists of a set of target values for the interface parameters as well
as an extra set of constraints. A variant instance is specified by a list of values for all the interface
parameters as well as the constraints.

Figure 3: UML Representation of the concept model.

3.1.2 XML Representation of the concept model, Interface and Specification
The concept model information is stored as a loosely typed XML file. Figure 4 shows the

XML file for a solenoid-operated valve. The concept name and concept type (“isa”) from the
attributes of the concept block. The sub-concepts are listed within the subconcepts block. Each sub-
concept block is used to provide an alias with the sub-concept identifier and sub-concept type as the
attributes. Similarly the parameters, constraints and maps are represented within corresponding blocks.
The attributes of a parameter are its visibility (public or private), the descriptive name, the data-
type (Real, Integer, String or Aggregate) and the default value. All public parameters are
included in the interface of the concept. The optional attribute “references” indicates a
reference parameter and the sub-concept parameter as the value. A parameter x of a sub-concept c is
accessed using the “.” operator as “c.x”. The display name is also as an attribute in the constraint and

ICED’07/494 7

map blocks. The two types of maps - algebraic and simulation are specified within the map block. In
this implementation, a simulation (third-party executable) is specified using an MDOL[21] script. In
this implementation, the designer provides the MDOL script. MDOL assumes that the executable
reads an input file and writes an output file upon evaluation. MDOL records the information necessary

for writing an input file with values of the input parameters and reading the output file to obtain the
values of the dependant parameters.

3.1.3 Concept example – Automotive charge air cooling circuit
Consider the hydraulic circuit shown in Figure 6. The circuit shown is typically found in

automotive engine cooling system. A centrifugal pump driven by the engine circulates the coolant
fluid through the heat exchanger called Charge Air Cooler (CAC) where the heat from the
supercharged air is transferred to the coolant. The hot coolant is passed through a second heat
exchanger (radiator) where the heat from the coolant is transferred to the environment. Varying the
rate coolant flowing through the radiator controls the temperature of the supercharged air. The amount
of coolant flowing through the radiator is varied by means of an electrically operated 2-way valve as
shown. This valve is operated using a pulse-width modulated (PWM) signal. The system consists of
four main sub-systems: 2-way valve, the radiator, the engine and the pump. We consider these sub-
systems as the sub-concepts for the concept “automotive cooling circuit”. Figure 6 (a) shows the
concept graph associated with the concept and some of the compatibility constraints. The solenoid-
valve can further be subdivided into a solenoid and the valve.

Figure 6: (a) Schematic, (b) architecture and (c) concept graph of the cooling circuit

3.2 Embodiment design problem formulation
The problem formulation is motivated by the fact that a design task, in general, involves both

constraint processing and optimization. Therefore it is natural that any formulation of the design
problem reduces to a constraint satisfaction problem (CSP) or a classical optimization problem under
appropriate restrictions. The embodiment design problem (after configuration) is a collection of sub-
problems represented by

Φ, X , D,C, F

i
{ }. Each sub-problem Φ, X , D,C , F associated with a

conceptφ is a generalization of optimization and CSP:

Figure 5: The Schematic of a solenoid along with maps and parameters of its concept model

 (a) (b) (c)

Parameter
(dispName)

Data
Type

Default Visibility

w_d (Wire
diameter)

real 0.28 mm private

n (# of
turns)

integer 3000 private

rho (Coil
resistance)

real 4.29
Ohm

public

c_d(Plunger
diameter)

real 7 mm public

c_l (Plunger
length)

real 30 mm public

F_min
(Min. force)

real 0.3 N public

…

ICED’07/494 8

Minimize F = F(φ) ={F
i
(X)}, i ={1,2,...m

1
}, such that the set of constraints C = {G, H} is

satisfied, where,

Φ = Φ(φ) = {φ

j
}, j = {1,2,...m

2
}, the set of m2 sub-concepts;

X = X (φ) = P∪ I (φ

j
)

j=1

m2

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟, X ∈ D , the design variables;

D = D(φ) = D(P)∪ D I (φ

j
)()

j=1

m2

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ , the set of domains for the design variables;

G = G(φ) = {g
k
(X) ≤ 0}, k = {1,2,...m

3
} , the set of inequality constraint;

 H = H (φ) = {h
l
(X) = 0}, l = {1,2,...m

4
}, the set of equality constraints;

I = I (φ) = {Ir : Ir ∈ X}, I ⊆ X , the interface of the concept;

 P = P(φ) = {p
s
}, s = {1,2,...m

5
}, p

s
∈ D(p

s
) , the parameters of the concept;

 m1
,m

2
,m

3
,m

4
 and m

5
 are constants.

A consistent set of solutions to the sub-problems is the solution for the configuration problem. When
the problem has exactly one sub problem, for which

 (Φ,G, F) = ∅, X = P ={x
1
, x

2
,...x

n
}, D ={D(x

i
)}, D ⊄ R the problem reduces to X, D,C , which

is the classical notion of constraint processing. If D(xi) ⊂ R , the problem reduces to a continuous-
CSP (c-CSP). Similarly, when the problem has exactly one sub problem, for which

 Φ = ∅, X = P = {x
1
, x

2
,...x

n
}, D = {(l

i
,u

i
)}⊂ R, l

i
≤ u

i
 the configuration problems reduces to a

classical non-linear optimization problem:
Minimize
 F(X)
where
 X = {x1, x2 ,...xn }
subject to
 G = gj (X) ≤ 0, j = {1,2,..m}

 H = hk (X) = 0, k = {1,2,..., l}
side constraints
 D ≡ li ≤ xi ≤ ui ∀i

Under this formulation, product configuration is a collection of sub-problems. Each sub-
problem is the design problem associated with a concept in the product architecture. Each concept
model, after architecting, is associated with a solver (configurator) that communicates with other
configurators to provide design solutions. A configurator is connected to the configurators associated
with the sub-concepts. In this implementation, each configurator configures a single concept for any
given specification and external constraint. A specification is a set of target values for a sub-set of
interface parameters. Different specifications are obtained by selecting different sub-sets of the
interface parameters as well as setting different targets of the selected parameters. A configurator
returns an instance that is closest to the provided specification.

4 PRODUCT CONFIGURATION IN THE C0DD FRAMEWORK
The strategy for product configuration is a composition of constraint solver and optimizer. In

this study, we use a backtracking search for constraint solving and NLPQL[22] for optimization. In the
context of this work, product configuration is defined as the selection of a particular product variant
given the concept definition and a specification. The architecture of a configurator is shown in Figure
7. Figure 8 shows the algorithms for product configuration. The concept XML definition is parsed
and the sub-concepts are identified. The configurators for the sub-concepts are created and a
connection is established between the configurators. This connectivity among the configurators is

ICED’07/494 9

topologically identical to the product architecture. Next, the given specification is used to identify the
optimization variables and produce an sequence of the maps in a concept. This ordering of the maps is
called the solution path [23]. The solution path is the order in which the maps are evaluated, starting
with the values of the optimization variables (OptVars) and specified interface parameters, resulting in
the values of all other parameters in the concept. This evaluation is carried out in step 1 of the
InstantiateSubConcepts procedure (see Figure 8).

The obtained OptVars are used in the formulation of the optimization problem. Apart from the
objectives specified within the concept, a new objective Ferror(X) is added as:

Ferror (X) = M (xi ,t arg et − xi ,evaluated)2

xi ∈Spec

∑ + (xi ,guess − xi ,evaluated)2

xi ∈OptVars

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ , where xi,target is the target

specified for the parameter xi in the concept specification; xi,evaluated is the value of xi obtained after
evaluating the maps starting with the value xi,guess provided by the optimizer; and, M is a large number
(exterior penalty method). The procedure InstantiateSubConcepts is nested within the optimization
loop to obtain a valid combination of sub-concepts. This instantiation is used to evaluate the rest of the
concept parameters, the objective functions and the constraint values. Different solution methods can
be obtained by modifying the InstantiateSubConcepts procedure.

Figure 7: Architecture of a configurator in CoDD

The configuration driven design framework is implemented in Java to achieve interoperability
and portability. The system allows the designer to create a new concept or modify an existing concept
model. The interface also enables to used to conduct many “what-if” studies such as: (a) addition or
modification of a constraints, (b) modifications to the specifications, (c) swapping out sub-concepts.
By default, the implementation does not execute the optimizer when the designer modifies the concept
model; the focus is on obtaining a valid instance. The system first identifies the compatibility
constraints that are violated. Only the sub-concepts that are adjacent to these violated constraints are
re-instantiated next using the InstantiateSubConcepts procedure. Figure 9 shows the main elements of
the CoDD system interface: the constraint graph, concept architecture, maps and parameters. A typical
result of the FormulateOptimizationProblem procedure for the “Solenoid” concept is also shown in
Figure 9.

 The implemented system provides a mechanism to conduct “what-if” studies by allowing the
designer to modify the specifications while the system solves for a valid instance. Moreover, the
designer is allowed to substitute one concept model with another for the sub-concepts. Subsequent
configuration results in either a valid design along with its performance estimate or a message
indicating invalidity. This feedback allows the designer to further refine the concept and complete the
design. From our initial experience with the system, we are developing methods to include geometric
constraints and CAD solvers into the configuration process. Such methods would allow the designer to
initiate configuration from within commercial CAD environments.

An embodiment design support tool that allows a designer to navigate through the concept
hierarchy is also currently under development. This tool, when complete, will allow the designer to
explore various architectures for the same requirements. The product configuration methods present in
this paper would form the final step in the design process.

ICED’07/494 10

Procedure Configure
Require: Concept, Specification
Returns: Concept Instance
1. Add constraints from Specification to Concept
2. Connect to configurators of sub-concepts
3. Identify optimization variables
4. Formulate the optimization problem
5. Formulate the Constraint satisfaction problem
6. Start Optimizer and Constraint Solver
7. Return result (Product instance)

Procedure IdentifyOptimizationVariables
Require: Concept, Specification
Returns: Optimization variables, Map eval. order
1. Initialize MapOrder to empty
2. OptVars := list of all independent parameters
3. RestParams := all parameters not in OptVars
4. For each parameter p in RestParams, do
 If p can be calculated given the values of OptVars

only, then
a. Identify the map m that evaluates p
b. Add m to end of end of MapOrder

3. else, add p to OptVars
5. Return OptVars and MapOrder

Procedure InstantiateSubConcepts
Require: Concept, SubConceptConfigurators,

Specification, OptVarValues, OptConstraints
Returns: ObjFunctionVals, OptConstraintVals

Use OptVarValues and MapOrder to calculate
values of all concept parameters
(ConceptParamValues)

For i = 1 to n, do
a Project DesignVarValues, Specifications onto

interface of sub-concept[i] to get
SubConceptSpec[i]

b AddtlCons := list of constraints that contain
interface parameters of sub-concept[i] as
their only unknowns

c Add AddtlCons to SubConceptSpec[i]
1. 2. Instance[i] := SELECT-VALUE(sub-

concept[i], SubConceptSpec[i])
Using the current instantiation, calculate

ObjFunctionVals and OptConstraintVals
Return ObjFunctionVals, OptConstraintVals

Procedure FormulateOptimizationProblem
Require: Concept, Specification, OptVars
Returns: ObjFunction, OptConstraints
1. OptConstraints := all constraints that are not

compatibility constraints
2. For each parameter p in Specification U OptVars,

do
 If p ∈OptVars and p is a dependent

parameter in a map m, then add (p – pguess)2
to ObjFunction

 If p ∈OptVars and p∈, then add (p – ptarget)2
to ObjFunction

3. Return ObjFunction

Procedure FormulateConstraintSatisfactionProblem
Require: Concept, Specification, OptVars,
SubConceptConfigurators
1. CSPConstraints := all constraints that are

compatibility constraints
 CSPVariables := all sub-concepts
2. For each x in CSPVariables, do
 SELECT-VALUE (x) points to

SubConceptConfigurators[i]::configure
(SubConceptSpec[i])

Figure 8: Listings for major procedures in CoDD implementation

Figure 9: Screenshots of the configuration driven design system

5 CONCLUSION AND FUTURE WORK
In this paper, we have introduced the notion of configuration driven design where the

embodiment design is modeled as configuration problem. The general principle of configuration, i.e.
selection of appropriate combination of components, is generalized to include the selection of a

Formulated
optimization problem
for Solenoid concept

Constraint
graph

Parameters
& Values

Concept Architecture

Parameters & Maps

ICED’07/494 11

particular instance from the product space. The product space is characterized implicitly by the
constraints defined within the concept knowledge representation. The XML based model to represent
the concept knowledge has also been presented. The modular nature of concept model allows nesting
of other concepts within a concept and facilitates hierarchical modeling and architecting. The concept
model allows encapsulation of concept knowledge using interfaces.

The configuration problem of selecting individual instance form the design space is
formulated as a generalization of constraint satisfaction and optimization problems. This formulation
reduces to hierarchical optimization technique such as ATC, or CSPs under appropriate restrictions.
The CoDD framework has been implemented in Java. A specification consists of (target) values for
the interface parameters and a set of design constraints on the concept. In the CoDD framework, a
configurator is attached to a single concept. The configurator configures a concept in collaboration
with other configurators attached to other concepts. An example of a cooling circuit for an automobile
is presented to illustrate the proposed methods.
Based on the work completed so far, we have identified the following directions for future work:
1. The assumption that a complete and accurate description of the concept knowledge is available

before configuration is very unlikely to be encountered in real life. The system should allow the
designer to modify the concept knowledge during configuration.

2. The designer deals with many of the constraints and the product architecture through various
commercially available CAD packages. The CoDD framework should provide seamless
integration with the CAD packages to allow simultaneous solution of the functional constraints
and objective during geometric design of components and assemblies.

3. The inclusion of assimilated knowledge, especially rules, is extremely important in a reuse
scenario.

ACKNOWLEDGEMENTS
The authors acknowledge the support of Discovery Park Center for Advanced Manufacturing
(CAM) for partially supporting the work presented.

REFERENCES
[1] Suh, N.P. Axiomatic Design: Advances and Applications. (Oxford University Press, New

York, USA, 2001).
[2] Papalambros, P.Y. Analytical Target Cascading in Product Development. 3rd ASMO UK /

ISSMO Conference on Engineering Design Optimization, pp. 3-18Harrogate, New Yorkshire,
UK, 2001).

[3] Dieter, G.E. Engineering Design: A Materials and Processing Approach. (McGraw Hill, New
York, USA, 1999).

[4] Vrinat, M. The case for design and simulation framework. alpha: The Journal of Virtual
Product Development2005).

[5] Soininen, T., Tiihonen, J., Mannisto, T. and Sulonen, R. Towards a general ontology of
configuration. Artificial Intelligence for Engineering Design, Analysis and Manufacturing,
1998, 12, 357-372.

[6] Yoshikawa, H. Design Theory for CAD/CAM integration. Annals of the CIRP, 1985, 34(1),
173-178.

[7] Pahl, G. and Beitz, W. Engineering Design. (The Design Council, London, 1984).
[8] Chakrabarti, A. and Bligh, T.P. A scheme for functional reasoning in conceptual design.

Design Studies, 2001, 22, 493-517.
[9] O'Sulliven, B.A. Constraint-Aided Conceptual Design. Department of Computer Science

(National University of Ireland, University College Cork, 1999).
[10] Crawley, E., Weck, O.d., Eppinger, S., Magee, C., Moses, J., Seering, W., Schindall, J.,

Wallace, D. and Whitney, D. The Influence of Architecture in Engineering Systems.
Engineering Systems Monograph (Massachusetts Institute of Technology, 2004).

[11] Sriram, R.D. Intelligent Systems for Engineering. (Springer-Verlag, London, 1997).
[12] Sebastian, H.-J. Intelligent Systems for Configuration Problems. In Sebastian, H.-J. and

Antonsson, E.K., eds. Fuzzy Sets in Engineering Design and Configuration (Kluwer
Academic Publishers, 1996).

[13] Otto, K. and Wood, K. Product Design. (Printice Hall, 2000).

ICED’07/494 12

[14] Feldkamp, F., Heinrich, M. and Meyer-Gramann, K.D. SyDeR—System design for
reusability. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 1998,
12, 373-382.

[15] Pahng, F., Senin, N. and Wallace, D. Distribution modeling and evaluation of product design
problems. Computer-Aided Design, 1998, 30(6), 411-423.

[16] Susca, L., Mandorli, F., Rizzi, C. and Cugini, U. Racing car design using knowledge aided
engineering. Artificial Intelligence for Engineering Design, Analysis and Manufacturing,
2000, 14, 235-249.

[17] Kim, J., Will, P., Ling, S.R. and Neches, B. Knowledge-rich catalog services for engineering
design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2003, 17,
349-366.

[18] Germani, M. and Mandorli, F. Self-configuring components approach to product variant
development. Artificial Intelligence for Engineering Design, Analysis and Manufacturing,
2004, 18, 41-51.

[19] Twigg, D. Managing product development within a design chain. International Journal of
Operations & Production Management., 1998, 18(5), 508-525.

[20] Ishino, Y. and Jin, Y. Acquiring engineering knowledge from design processes. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing, 2002, 16, 73-91.

[21] Engineous Inc. www.engineous.com/product_iSIGHT.htm.
[22] Schittkowski, K. NLPQL: A Fortran subroutine for solving constrained nonlinear

programming problems. Annals of Operations Research, 1985/86, 5, 485-500.
[23] Salustri, F.A. Towards a Logical Framework for Engineering Design Process. In Cugini, U.

and Wozny, M., eds. From Knowledge Intensive CAD to Knowledge Intensive Engineering,
pp. 213-225 (Kluwer Academic Publishers, 2000).

Contact: Prof. Karthik Ramani

Purdue University
School of Mechanical Engineering
585 Purdue Mall, Room 304
West Lafayette, IN 47906
U.S.A.
Phone: +1 (765) 494-5725
Fax: +1 (765) 494-0539
e-mail: ramani@purdue.edu
URL: http://engineering.purdue.edu/precise

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth 8
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

