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ABSTRACT  
 

Several renowned classical tree search methods such as depth first, breadth first, A-star etc. are in 

place today for dealing with problems of topology and parametric optimization. We propose a novel 

optimization technique based on mathematical graph transformations in order to synthesize feasible 

and optimal graph topologies. This paper demonstrates the methodology and results from the 

application of this new optimization method to the Route test problem. The power of the approach lies 

in the high level of abstraction afforded by the usage of mathematical graphs and the fact that the 

entire optimization process is viewed as a large tree search. Additionally the generic nature of the 

method enables tackling problems of a multi-disciplinary nature to be a feasible proposition in the 

future. The optimization technique is broken up into four separate modules named representation, 

generation, guidance, and evaluation. The modules correspond to problem formulation 

(representation), synthesizing a broad spectrum of feasible topologies (generation), navigating the 

search process towards progressively better solutions (guidance) and evaluating the worth of each 

topology respectively (evaluation). This fundamentally new optimization method is specifically 

intended for performing topology optimization of graphs and thus has potential application in domains 

as varied as engineering, computer science and artificial intelligence. 
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1 INTRODUCTION 

 

As it stands today there are numerous computational tools which aid in the analysis portion of the 

engineering design process. Some of these may be Finite Element Analysis (FEA) [3], or 

computational fluid dynamics (CFD) [4]; however there is a clear lack of any such commonplace tools 

for the synthesis aspect of the design process. Keeping in mind current design cycle times and 

technological advances it is obvious that designers would benefit from the development of such a 

computational synthesis plus optimization tool that would emphasize or focus on topological 

variations and optima. Although topology optimization problems are being studied by several 

researchers [5] there is a lack of consensus on commonalities between the problems or techniques 

being used to solve them. In an effort to deal with topological problems researchers at the University 

of Texas at Austin have developed a powerful, generic computational tool named GraphSynth [1]. The 

underlying principles have been derived from fields such as traditional optimization, artificial 

intelligence [6] and graph theory [7]. Other software tools [8, 9, 10, 11] have been developed 

capturing and manipulating graph grammars but these tend to lack generality, an object-oriented 

framework, a modern user-interface, and tools to allow automatic rule execution. 
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The new search method is based on organizing the set of candidate solutions as a tree of solutions that 

are represented by repeating calls of grammar rules [12] written in GraphSynth. The test problem that 

was chosen to demonstrate the optimization method in this paper is named Route. In the Route 

problem the aim is to create the best network between multiple locations or cities. In this research, best 

is defined by minimizing both the cost of establishing all the routes and the cost of traversing a route 

between every pair of cities. These two objective functions force the search to strike a balance 

between minimizing the total number of routes, and optimizing the network for quick traversal. These 

two goals are described in more detail in the evaluation section of this paper.  

 

There are several potential areas of application for this new optimization method. One of these is the 

inventory routing problem (IRP) [13, 14, and 15]. The IRP involves integration and co-ordination of 

two key components of the logistics value chain: vehicle routing and inventory management [16]. The 

evaluation module of the IRP would involve minimizing the distribution costs during the planning 

period without causing the inventory stocks to run low thus inconveniencing customers. Flight 

scheduling [17] is another problem which could take advantage of the new method. This problem is 

especially interesting in a modern day context with airlines worldwide having to cut costs in several 

facets of their operations. Parameters such as placement of hubs, lay-over times, ground servicing 

could be treated as some of the optimization knobs.  

 

We also envisage that this optimization method could be used to study and solve network flow 

problems [18]. These according to classical graph theory involve an assignment of flow to the edges of 

a directed graph where each arc has a particular capacity, such that the amount of flow along a 

particular arc does not exceed its capacity. These network flow problems are a gateway to optimizing 

transportation networks, electrical distribution systems or even problems in ecology. 

 

The simplest elements of a mathematical graph are a node and an arc. It is on the basis of these atomic 

constituents of graphs that the new optimization method has been developed. The crux of the 

optimization method proposed relies on what is classically referred to as graph transformations [12]. 

In essence the graph transformations are analogous to the basic set theory operations of union and 

intersection. Thus with an eye on representing any engineering design or network problem such as 

Route, it became imperative to come up with a set of rules that encapsulated the design space. These 

rules are known as grammar rules. Typically a grammar rule consists of a left hand side (L), right hand 

side (R) and a commonality graph (K) between them [19, 20]. On a higher level; a set of rules making 

up a grammar ruleset is the means for a human designer to organize thoughts and capture the complete 

design space into a compact framework. Thus, the rules become the currency of representing the 

problem. The real challenge for the designer now lies in creating a grammar ruleset that has the ability 

to capture every feasible graph topology while at the same time minimizing the number of unfeasible 

topologies that are encountered.  

 

The entire optimization process of the new method is envisioned as a large tree search. Each state in 

this tree defines a candidate topology. The various transitions in the tree correspond to grammar rule 

applications. Traditionally tree searching algorithms such as A* search [2] or Uniform Cost search [2] 

have been used to solve for optima. However in the Route problem these cannot be used as the space is 

large, multi-modal, and non-monotonic. Classical branch-and-bound [21] is also ruled out for Route 

since there is no clear upper bound that can be calculated or predicted. Hence we have developed our 

own algorithms with a certain stochastic element that would enable jumping from one branch of the 

tree to another thus preventing it from getting stuck in local minima. In the Route problems the 

optimal graph lays between two extremities namely the minimal spanning tree and the complete graph 

for `n` number of cities. Well established algorithms by Prim [22] and Kruskal [23] are already in 

place to deduce the minimum spanning tree for any connected weighted graph. Our endeavour is to 

seek the optimal topology which lies embedded in the tree somewhere between the minimum spanning 

tree and complete graph.    
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2  METHODOLOGY 

 

Our approach to the entire problem is divided into four generic compartments or modules: 

representation, generation, evaluation and guidance. The method has been depicted as a flowchart in 

Figure 1 Each one of the modules has been explained below for the Route problem. 
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                     Figure 1           Figure 2 

 

                                       

 

2.1  Representation 

 

The first step to solving the problem lies in problem formulation. The cities in Route are represented as 

nodes and the roads connecting them as arcs. The input to the entire process is a “seed graph” which is 

basically a non-simplicial graph [24] depicting only the nodes or cities. Additionally there are three 

grammar rules for the Route problem which have been placed under two sequential rulesets. A ruleset 

has been defined by the researchers from an implementation perspective. From a human designer‟s 

perspective a ruleset is a set of rules which may have been grouped according to any number of 

reasons e.g. global or local labels that are applicable to the rules are common, certain rules occur 

within a certain stage of the design process etc.  

 

The basic components of any grammar rule are a left hand side of application conditions (L), a right 

hand side of resulting graph transformations (R) and a graph of common elements (i.e. nodes, arcs or 

labels) which essentially provide the context for the particular rule‟s application. This commonality is 

indicated by the symbol K. The K is a very crucial aspect of any grammar rule as it shows the 

intersection or overlap between the L and R sides of the rule. The Figure 1 indicates the grammar rules 

that have been developed for representing the Route problem. The labels that may be a part of K are 

indicated by the superscripts in the top left of the grammar rule.     

 

Computationally rules 1 and 2 have been grouped into a ruleset named “getToSpanningTree” while 

rule 3 has been put under “getToCompleteGraph”. Since we know that the graph representing the 

optimal solution lies between the minimum spanning tree [7] and complete graph [7] these two 
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rulesets when applied in conjunction generate all possible graph topologies that lie between the said 

two anchor points. More implementation details about the rulesets have not been discussed as it is 

beyond the scope of this paper.  

 

2.2 Generation 

 

The generation module is the second major step in the entire optimization process. Essentially the 

generation module involves performing some graph transformations to synthesize varied topologies. In 

the Route problem this step corresponds to producing graphs between a spanning tree and the 

complete graph. From classical graph theory we know that for a graph of `n` nodes (i.e. cities in 

Route) the total possibilities of unique spanning trees are
n2  [24]. Empirically there are 

2

)1( nn
  arcs 

in a complete graph of `n` nodes. Additionally it is known that 1n  arcs must exist in a graph of `n` 

nodes for it to be deemed a spanning tree. Thus if we were to consider the Route problem for 20 cities, 

we would be dealing with 1048576 unique spanning trees! The optimal solution lies anywhere 

between graphs with 19 arcs (spanning trees) to 190 arcs (complete graph). With such a small set of 

nodes the large nature of the search space becomes obvious. 

 

As mentioned earlier one of the initial specifications to the optimization process is known as the “seed 

graph”. The seed graph is viewed to be the embryo that can spawn any possible topology as long as 

the necessary graph transformations i.e. rule applications are performed upon it. In Route however the 

grammar has been designed in a way such that only feasible topologies are generated thus the search 

space that has to be dealt with is more manageable. 

 

       
Figure 3: Seed graph                                         Figure 4: Sample spanning tree 
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Figure 5: Complete graph 

 

 

 

 

The Figure 3 depicts a seed graph of five major states in the state of Texas, USA used in the Route 

problem. The seed graph is a non-simplicial or `n` component graph (`n` being the number of cities). 

Figure 4 indicates a sample spanning tree while Figure 5 shows the complete graph with 10 arcs 

(i.e.
2

)1( nn
) for the five cities. The generation module is effectuated in conjunction with the 

grammar. This has been built into the background of the optimization package GraphSynth. From the 

implementation perspective the entire generation module is a distinct three step process: recognize, 

choose, and apply (Figure 6). At any stage in the creation of various topologies of Route, the designer 

would like to know of all possible changes that could be made. The recognize step involves checking 

all possible rules of the applicable rulesets with the graph to determine if the application conditions 

allow the rule to be applied [12]. Once the recognition is done the next step is to choose the rule to be 

considered for application [25]. This choice may be done via the human designer through a GUI, 

randomly, or by an intelligent agent [26] based on the feedback of the entire optimization routine. The 

final step is the rule application. In Route upon application new routes (arcs) are introduced into the 

graph. 

 

From the graph theory perspective the generation module is performed by the combined Double 

Pushout/ Algorithmic Free Arc Embedding approach [27, 28].    

 

 

Figure 6: There are three distinct steps in generation: 1) recognizing what rules are applicable, 2) 

choosing one of these rules to apply, and 3) the application of the rule which involves a graph 

transformation of the host to a newly synthesized state. 
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2.3 Evaluation 

 

In any computation based optimization routine it is an accepted fact that the evaluation phase is one of 

the most intensive both in terms of computational memory and time. In the new method proposed 

evaluation is the third major module. All along the optimization routine it is important to note that a 

fixed number of candidate topologies are maintained. This is commonly referred to as “pool” of 

candidates. Once a candidate pool has been generated the candidates are sent to the evaluation module. 

Here the worth of each candidate is evaluated.  

 

As the title of the paper suggests, the goal is to create candidates that are both robust and efficient. The 

term robust here means that the solutions obtained have no loss in connectivity between any pair of 

cities, thus ensuring that there is always a path to get from one city to another. In graph theory terms 

this means that solutions that are feasible but not necessarily optimal correspond to simplicial graphs 

or one-component graphs. The term efficient means that the candidate is productive without being 

wasteful. In the Route problem, this means laying down the minimum number of routes. As a result, a 

multi-objective problem is established. 

 

In order to elucidate the evaluation, consider the example candidate topology shown in Figure 7. The 

names edcba ,,,,  indicates five cities in the Route problem. The arcs bcebdead ,,,  depict the routes 

present in the candidate topology. The heuristic for the problem is the fact that the shortest distance 

between any two points (i.e. cities in Route) is a straight line. Thus the evaluation function has been 

defined as: 

 

 
       Figure 7 

 

Minimize f  such that: 

                                                              f   }{1}{ 2111 fWfW                                   (1)   

Where:  

 

1W  Weighting factor = 0 ~ 1 
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In this equation, the first term in the braces defines the efficiency measure. It simply represents the 

sum of lengths of the arcs within the topology. If this objective is the only one used, then the 

optimization will seek to remove arcs. However, since the rules presented in Section 2.1 constrain our 

search to one-component graphs, then the global minimum will be the minimum spanning tree.  
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The second objective function in Route is shown in the second pair of braces. Each parenthetical 

expression corresponds to the distance traversed from each city to every other city. The first term 

captures the distance from „a‟ to „b‟; the second from „a‟ to „c‟, etc. As the reader can see, individual 

arcs appear in multiple expressions. If this objective is taken alone, then the optimization will tend 

toward the complete graph so that one arc corresponds with every single possible journey.  

 

This second objective requires a slightly more complicated algorithm than the first. In general, these 

objectives do not have a closed form, as each topology will have a different number and arrangement 

of arcs. In this second objective, a uniform cost search [29] is required to find the shortest path 

between every pair of cities. Uniform cost search is a type of tree search algorithm that is similar to 

breadth first search but orders solutions based on their path cost as opposed to their level. It is a 

complete method and guarantees the optimum, although it is sometimes slow and demands high 

computational resources for large trees. We have found that for thirty cities, the determination of this 

objective becomes a significant bottleneck for the optimization method. 

 

 

2.4 Guidance 

 

This final module of the optimization method is the step where some decisions are made regarding the 

fate of each candidate topology. The main emphasis of the guidance module is to progressively 

navigate the search process towards better solutions over several iterations or until a particular 

convergence criterion has been met. It has been noticed that existing approaches to optimization 

commonly involve usage of the popular genetic algorithms [30]. These have been extensively 

favoured by researchers for solving various problems. Rather than just pursue the optimum based on a 

single metric like the fitness value of the candidate, our optimization method harnesses the tree like 

nature of the search space. The new algorithm that has been developed and implemented for the Route 

problem, though inspired from the genetic algorithm, is still quite different from it. 

 

The optimization algorithm has been named QuattroElitism. As a first step inside the guidance module 

the entire pool of candidates that have been evaluated are now sorted in descending order of fitness 

values which were assigned to them in the evaluation module. Once this has been done four basic 

operators have been defined within guidance. The operators are: preserve, makechild, invokeparent 

and remove. At this point it becomes important to mention that before candidate topologies are sent to 

the relevant operator for further action a check is introduced so as to equalize the sizes of the preserve 

and remove computational lists. This is done to keep the lists the same size during each iteration to 

ensure that the population size does not change over the span of the search process. The various 

operators have been defined with an eye on being able to move down, backtrack or stay put on the 

state tree (Figure 8).  

feasible search space
infeasible solutio

ns

preserve

makechild

invokeparent

destroy

seedgraph

feasible search space
infeasible solutio

ns

preserve

makechild

invokeparent

destroy

seedgraph

 
Figure 8: A state tree view of the guidance operators 
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The first step within guidance is to divide the pool of candidate topologies into quarters based on 

decreasing fitness values. The top quarter of candidates are sent to the preserve operator (Figure 9). 

Within this operator a true copy of each candidate is made and half the copies are sent to the 

makechild operator while the other half are sent to the invokeparent operator. Thus at the end of 

applying the preserve operator to every candidate in the first list it ends up containing the top quarter 

of candidates and a true copy of every candidate.     

 

The second quarter of the candidates is sent to the makechild operator (Figure 9). Here each candidate 

is again sent to the generate module and a single grammar rule is randomly selected from the various 

applicable choices and applied to the candidate graph topology to complete the graph transformation. 

This operator enables the search process to aggressively move down the state tree provided the size of 

the perturbation is sufficiently large.  

 

The third quarter of candidate topologies is sent to the invokeparent operator (Figure 9). Once again 

upon sending each of the candidates to the generate module the grammar rule that had been last 

applied to the candidate before its current state is removed or “undone”. Essentially the invokeparent 

operator enables the search process with the capability of backtracking or moving up the state tree as if 

it feels that bad design decisions are being pursued. In the case of the Route problem this could mean 

one of several things e.g. the fitness values of candidates suddenly become large upon further pursuing 

the downward path on a particular branch of the state tree, or a city is left out of the solution etc.           

 

The final quarter of the candidates is sent to the remove operator (Figure 9). Here each of the said 

candidate topologies is entirely removed from the population i.e. deleted. However the overall 

population of the candidates still remains the same static number as the copies of candidates that had 

reached the preserve operator replace the ones lost due to the remove operator. 

 

 

 

 

 
Figure 9: The guidance operators in terms of fixed population size 
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3 RESULTS & CONCLUSION 

 

The graphs resulting from the runs of the new optimization method have been presented in Figures 9-

12. The final results have also been tabulated in Table A. The machine used for the purpose was a 

standard Windows PC with an AMD processor running at 2.21 GHz, 2 gigabytes of RAM. The 

software development environment was Visual Studio.NET. A candidate pool size of 20 was chosen 

and the entire optimization routine was run for 1000 iterations for each of one the optimal topologies 

generated. The approximate amount of time taken was 227 seconds.   

 

     
Figure 10: Minimum Spanning Tree 

  

  
Figure 11: 1W = 0.8 
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Figure 12: 1W = 0.5 

   
Figure 13: 1W = 0.2 

 

 
Figure 14: Complete Graph 

 

Tabulated results 

Weighting Factor ( 1W ) 1 0.8 0.5 0.2 0 

First objective ( 1f ) 3235 14212 23743 36554 53397 

Second objective ( 2f ) 65744 60459 55760 53946 53397 

Number of arcs 9 17 25 34 45 

Table A. 

 

The final results for the Route problem with 10 major American cities have been tabulated in Table A. 

Upon setting the weighting factor “knob” 1W  equal to 1 it essentially ended up capturing the 

Minimum spanning tree (Figure 10) which had 9 arcs for 10 nodes. Similarly upon setting 1W  equal to 

0 we capture the complete graph with 45 arcs for 10 nodes (Figure 14).  Figures 11, 12 and 13 capture 

three other optima when 1W  has been set equal to 0.8, 0.5 and 0.2 respectively. Upon examining the 

evaluation function it is clear that if 1W  is given a bigger weight then the optimal graph topology will 

get pulled toward the Minimum spanning tree i.e. the graph will tend to have fewer arcs thus making it 

more efficient. Similarly if 1W  is given a lower weight then the optimal topology tends to get pushed 

toward the complete graph i.e. the graph will tend to have as many arcs as possible thus making it 

more robust.   
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In this paper, we have presented a new search method that seeks optimal graph topologies for a 

specified objective function or functions. This is the first topology optimization method that has been 

developed specifically for domains representable by a graph grammar schema. The key driver of this 

new search technique is the fact that the search space behaves like a large tree. With the help of the 

atomic operators defined earlier under Section 2.4, basic tree traversal techniques have been outlined 

that are the cornerstone of this technique.  

 

The QuattroElitism approach described in this paper is not the only guidance method being considered 

by the researchers. There is evidence that more efficient methods may be used to tackle problems such 

as Route. This proposed new guidance strategy would involve a more stochastic approach akin to 

branch-n-bound techniques. Another aspect that is being investigated and that could greatly speed up 

the current approach is to enable the algorithm to make an informed or intelligent decision of which 

branches of the tree are to be avoided. This is not to say that QuattroElitism will not work for certain 

specific network problems. An important learning derived from this research endeavour has been the 

fact that specific applications may demand specific guidance methods. Hence, we plan to develop 

more guidance techniques which learn ways to target or mimic design decisions such as preferring one 

grammar rule over another.     

 

As a next step to furthering this work we plan to implement a GA as a guidance strategy for the Route 

problem and compare results between QuattroElitism and the GA. Other applications such as MEMS 

devices and neural network problems are planned too as test problems for QuattroElitism. The 

representation, generation and evaluation modules for the above applications have been developed by 

other researchers in our lab. This fundamentally new search technique holds great potential for 

application in other fields within engineering and AI.    
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