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ABSTRACT 
The machines of tomorrow will be capable of self-optimization. This means that they are able to adjust 
to changing surroundings and conditions on their own. New systems require new developmental me-
thods and strategies. The approach, which is presented here, is based on evolutionary algorithms in 
order to design the principle solution of a self-optimizing system. The evolutionary algorithm pro-
duces the active structure automatically. The partial model shape, behavior and function can be de-
rived from it. The representation for these self-optimizing systems and the approach, how to design a 
concept with evolutionary algorithms is, what is described in this article. The functionality of this 
method will be verified by an example.  
 
This contribution was developed in the course of the Collaborative Research Centre 614 “Self-
Optimizing Concepts and Structures in Mechanical Engineering” (Speaker: Prof. Gausemeier) funded 
by the German Research Foundation (DFG) under grant number SFB 614 (see www.sfb614.de for 
further details). 
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1 INTRODUCTION 
Products of mechanical engineering and related branches are more and more based on a close coopera-
tion of mechanics, electronics, control engineering, and software engineering. It is the term mecha-
tronics, which expresses this. Mechatronics optimizes the behavior of technical systems: Sensors 
gather information about their surroundings, which are then digitally processed and then actuators 
generate an optimal reaction for these informations. Future technical systems will consist of system-
components with an inherent part-intelligence. The behavior of the whole system will be affected by 
the communication and interaction of their intelligent components. This opens up a new perspective 
for mechanical engineering. The term “self-optimizing” characterizes this new perspective signifi-
cantly. A special challenge comes from the fact, that it is no longer possible to anticipate all possible 
system states.  
Extensive instruments for the development of such systems are being developed in the context of the 
Collaborative Research Centre 614 “ Self-optimizing systems in mechanical engineering”. Two ap-
proaches are being followed in the Collaborative Research Centre. One approach follows the construc-
tion methods by PAHL/BEITZ [1], [2], [3]. The second approach is based on the use of an evolutionary 
algorithm (EA). This is the subject of the article at hand. Central to both approaches is the so-called 
principle solution, which is the result of the conceptual design. The principle solution defines the 
physical and logical mode of operation of the system, as well as the structure of the system elements. 
In our approach, the principle solution is build by an evolutionary algorithm.   
Evolutionary algorithms were already used in a number of other projects for the development of tech-
nical systems. Hence, we can only mention a few of these projects at this place. A classification of 
already existing work on the topic has shown that EA's are mainly used for the development and opti-
mization of two aspects of technical systems: Namely for developing and optimizing the design of a 
technical system [4],[5],[6] and for developing and optimizing the motion of a technical system 
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[7],[8]. VANJA has already found that the use of evolutionary algorithms for a developmental process 
is not opposed to the prevalent design theory [5], because developers also make use of evolutionary 
approaches. Impressive results have been presented by Lipson, Polack and others, too. They developed 
methods for autonomous development of static structures (Legobots) and dynamic robots. The design 
and the controller of the robot are built automatically, and they are able to manufacture themselves 
(partly). [9], [10]  
Most of the related work, which takes into account real systems of mechanical engineering or mecha-
tronic systems, uses evolutionary algorithms to optimize these systems. To optimize means for exam-
ple: Found the right shape and diameter for a tube to maximize the flow rate. Or find the best parame-
ters for a controller to minimize the reaction time of the system.  
Our aim is to support the engineers in the conceptual design during develop of the principle solution. 
The presented approach should support the engineers with new design ideas or show possible solu-
tions. This principle solution is not concrete enough, that one ore more single parameter of a special 
aspect should be optimized. In the Collaborative Research Centre 614, a specification technique for 
the principle solution has been developed. It is necessary to take account of a total of eight aspects to 
specify a self-optimizing system: Requirements, environment, functions, scenarios, shape, system of 
objectives, active structure, and behavior. The presented approach can support the design of self-
optimizing systems, because the needed partial models are take into account. Four of these eight as-
pects will be taken into account in this article: functions, active structure, shape, and behavior.  
Furthermore, we use solution elements to describe the single components of a system. A solution ele-
ment is a well-known and tested component, which you can buy or which has been developed in a 
earlier project. For example, it can be an engine or a microprocessor. Every solution element is de-
scribed by the eight mentioned aspects. However, other projects, which try to found ideas for products, 
etc. only take one or two aspects into account: The mechanical design (structre) or/and the movement.  
The structure of the article is as follows: The concept of self-optimizing systems will be introduced in 
the upcoming paragraph. The computer-internal representation will be illustrated in the next para-
graph. The approach to a design with evolutionary algorithms will be presented in chapter four. Chap-
ter five consists of an example. The article closes with an outlook on future development.  

2 SELF-OPTIMIZING SYSTEMS 
Future systems in mechanical engineering consist of configurations of intelligent system-components. 
The behavior of the whole system will be affected by the communication and cooperation of these 
intelligent system-components. On the software side, these are distributed systems of cooperating a-
gents, by which a self-optimizing behavior is possible.  
The term self-optimizing is defined as follows: 

 „Self-optimization of a technical system is defined as the endogenous adjustment of the 
aims of the system to changed influences and the resultant autonomous purposive adap-
tion of the parameters and, if necessary, the structure and thus of the behavior of the sys-
tem. So self-optimization goes well beyond the known rule- and adaptation strategies; 
Self-optimization enables systems with inherent intelligence, that are able to take action 
and which are capable of reacting independently on changing conditions.“ 

The following characteristics can be derived: Self-optimizing systems are capable of recognizing in-
fluences on the system. These are influences originating from the surroundings of the system (envi-
ronment, user, etc.) or the system itself. The self-optimizing system determines its aims according to 
the recognized influences. This means for example, that the emphasis of the aims can be altered, new 
aims can be added or existing aims can be neglected. The adjustment of the aims redefines the system-
behavior. The adjustment itself happens via altering the parameters of the system and if this is not 
sufficient, via altering the structure. Altering the parameters means, that one or more numerical values 
change, e.g. the parameters of a controller. Structural adjustment means that the system alters the cur-
rent configuration of the system components and their relation among each other. With this, there is a 
distinction between reconfiguration, which means that the relations between the system components 
change, and adaptation, which means that new system components are integrated into the system.  
Self-optimization itself is understood as a process, which consists of three steps: “Analysis of the cur-
rent situation”, “determination of the system objectives”, and “adaptation of the system behavior”. 
These three steps of the self-optimization process will be explicated in the following: By “analysis of 
the current situation”, the current situation includes the state of the system itself and all the observa-
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tions that have been made about its environment. Such observations may also have been made indi-
rectly by communicating with other systems. By “determination of the system objectives”, the current 
objectives of the self-optimizing system have been determined anew. At least “adaptation of the sys-
tem behavior” leads to the new objectives.  
The specific feature of self-optimizing systems is the endogenous alteration of objectives and based on 
this, the alteration of behavior. A state transition occurs in the context of the self-optimizing process. 
[2] 

3 REPRESENTATION OF SELF-OPTIMIZING SYSTEMS 
In order to describe the eight aspects or views of the principal solution of a self-optimizing system, a 
set of specification techniques will be used. Every view is represented by a partial model on the com-
puter. The principal solution is described through eight partial models. The partial models are inter-
connected and can affect each other. These relations result in an integrated system of partial models, 
by which the principal solution is represented on the computer [3]. 
For a design using evolutionary algorithms, the representation of the principal solution is split up into 
two sections (Figure 1): One representation is automatically generated by the evolutionary algorithm. 
This is, what is called the active structure. The other representation shows the objectives of the design 
and is used in order to evaluate it. In this case, they are the three partial models “shape”, “function”, 
and “behavior”, in which the “behavior” is modelled by a multi-body system. The representation, 
which is generated by the evolutionary algorithm, is called genotypic representation (genotype) (The 
terms genotype and phenotype are used to describe this two view, because to get the phenotype, a de-
coding of the genotypes formal description is necessary) [10]. The representation, which represents the 
objective of the draft, is shown as phenotype in Figure 1.  
 

 

Figure 1: Derivation of the behavioral model (multi-body system), the building structure 
and the functions from the active structure 
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The active structure is automatically generated by the evolutionary algorithm. Methods of natural evo-
lution are used in order to achieve this. The three partial models “shape”, “function”, and “behaviour” 
are derived from the active structure. This derivation also happens automatically. The results are four 
partial models of the principal solution. In the following, when mentioning the principal solution, ex-
actly the four models “active structure”, “shape”, “function”, and “behaviour” are meant. Only some 
of these models need to be modelled, in order to generate the principal solution, but in this way, the 
comprehensibility of the text shall be increased. 
The genotypic and phenotypic representation will be introduced in the following. Further, the way of 
deriving the phenotype from the genotype will be discussed.  

3.1 Genotypical representation 
As mentioned before, the active structure is used as a genotypic representation. The active structure is 
assembled from system elements and their relations among each other. These relations form flows of 
information, matter, and energy. At the beginning of the design process, the system elements are still 
abstract and act as placeholders for the software components or the assembly group. They are substan-
tiated in the course of the developmental process. In order to model relations between the system ele-
ments, every system element is provided with an interface. The values of the system elements (e.g. 
forces, breaker signals…) are transmitted through this interface. Four attributes are used in order to 
provide a more detailed description of the interfaces: These are the class of the interface (information, 
energy, or flow of material), the type of the interface (e.g. mechanical), the unit of the interface (e.g. 
Newton), and two boundary values (min / max) The interfaces can permit for directed and undirected 
connections and they can also serve as entries and exits. The computer-internal representation of the 
system elements contains references to partial models. The partial models describe the system ele-
ments more accurately (Figure 1). These are the partial models of “shape”, “function”, and “behav-
iour”.  

3.2  Phenotypical representation 
The partial models “shape”, “function”, and “behaviour” of the whole principal solution represents the 
phenotype. The partial model “shape” contains information about the rough shape of the principle 
solution and of the active surface, as well as, information about the position of active points.  Active 
Points indicate the interface of a logical function. The functions describe the basic functionality of the 
system. Therefore, special functions as defined by ROTH are used [12]. In order to describe the “be-
havior”, which in this case is the movement, a multi-body system and a block diagram are used. The 
block diagram describes a controller.  

3.3 Derivation of the phenotype from the genotype 
The phenotypic representation can be derived from the genotypic representation: Every system ele-
ment is specified by the three partial models “shape”, “function”, and “behavior”. The system ele-
ments are connected by their relations among each other. Because of these interconnections, relations 
between the partial models can be derived. In this way, the two associated partial models and the two 
similar associated system elements are connected respectively. This applies to the whole active struc-
ture. This is how an assembly structure is derived from the singular shape models, as well as, a func-
tion model from the singular functions and a multi-body system for the whole principal solution from 
the singular multi-body systems.  

4 EVOLUTIONARY DESIGN 
The evolutionary design is split up into two phases (Figure 2), the pre-process and the runtime-
process. During the pre-process, the requirements to the principal solution and its behaviour of move-
ment are calculated. The requirements describe the objective of the design. The automatic generation 
of the four partial models, namely the active structure, “shape”, “function”, and “behaviour” follow. 
The runtime-process can for instance operate during the running time of the self-optimizing system: 
The self-optimizing system can evaluate which system elements are adequate in order to meet the re-
quirements of the functions and it can then adjust itself according to these requirements.  
Next up, this procedure will be introduced, followed by the evolutionary algorithm which is used for 
the design.  
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4.1 Procedure 
The procedure consists of seven steps, as shown in figure 2. The pre-process consists of the five fol-
lowing steps: Definition of requirements, arrangement of a function-hierarchy, analysis of compatibil-
ity, definition of the movement, and generation of an initial population. The post-process consists of 
two steps: Evolutionary optimization and choice of a principal solution. The steps are described more 
closely in the following. However, the first two steps will be skipped because they have been standard-
ized by PAHL/BEITZ.  
The compatibility analysis is carried out with the help of a compatibility-matrix. The requirements are 
listed in the columns of the matrix, whereas the functions are listed in the rows. The fields of the ma-
trix evaluate how good or how bad the functions meet the requirements. The scale goes from 1 
(=completely incompatible) to 5 (=consistent). The compatibility analysis provides a relation between 
functions and requirements.  
In the next step, the pre-defined movement is specified by a path. Hereby, two different types of paths 
are distinguished: The first path is the so-called system path. The principal solution has to be able to 
follow this path. The second path is the so-called load-path. This path describes the way of a load. The 
designed system has to be able to transport a load along this path.  
In the next step, an initial population is generated. This population consists of a limited number of 
active structures. The initial population is generated at random. The origin of it is an initial system. 
This is the first active structure. It is then multiplied and single system-elements are replaced ran-
domly. The system can either be defined by the user or also be generated at random. If the user already 
has a good idea about the system, its active structure can be specified. However, if there is no basic 
idea, the initial system is generated randomly.  
 

 
Figure 2: Methodology for the evolutionary design 
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During the runtime-process, the initial population is optimized by an evolutionary algorithm. The sin-
gle steps of the algorithm are described in the following. This optimization process can for instance 
happen during the running time of the self-optimizing system. In this way, the steps one to five can be 
processed during the conceptualization. During the running time, the system can evaluate whether, for 
instance another configuration of the system elements allows for a better adaptation to the environ-
ment. However the system can not reconstruct itself, but it can recommend reconstruction during 
maintenance. Because the optimization-algorithm allows for more than one potential solution, it is up 
to the user, to decide, which solution to choose.  

4.2 Evolutionary Algorithm, Operators, and Evaluation 
The evolutionary algorithm optimizes the initial population, which was generated during the fifth step. 
It is based on the kind of genetic programming, which was developed by KOZA [13]. The operators 
however were altered for this application.  
The workflow of the algorithm, as well as the operators and the evaluation function will be introduced 
in the following.  

4.2.1 Workflow of the algorithm 
Figure 3 describes the workflow of the algorithm schematically. This shows step number 6, as dis-
played in Figure 2. The initial population serves as starting point for the optimization process. During 
the first step, the principal solutions are evaluated. Therefore the phenotypical representation is de-
rived from the genotypical representation. A value of fitness is calculated for every phenotype (s. 
4.2.3). This is a numerical value, which describes how good or how bad the principal solution matches 
the requirements. Then the recombination follows. Two new active structures are generated from two 
active structures of the current population respectively. Then the active structures of the populations 
mutate. In order to achieve this, singular elements of the system are exchanged. Next up is the evalua-
tion of the population where, again, the fitness value for the population is calculated. Then comes the 
selection: Promising active structures – those with a high fitness value – remain in the population, 
whereas bad ones are deleted. The method, which is called “ranged selection”, is used to achieve this 
goal [14]. 
 

 
Figure 3: Course of the evolutionary algorithm 

Finally the cycle starts over again. The algorithm continues to run until one of the stop criteria is met.  

4.2.2 Evolutionary operators 
Two evolutionary operators are used: The recombination-operator and the mutation-operator. 
The recombination-operator generates a new active structure from two existing active structures. In 
order to achieve this, two active structures are chosen from the population. One active structure is split 
up at random connection points. (flow of matter, energy or material). The second active structure is 
split up in a way, so that the number of separated connections agrees with the number the separated 
connections of the first active structure. In this way, there are always four halves of active structures. 
Next, any of the halves is connected, each which a half of the opposing active structure. The muta-
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tions-operator alters an active structure by exchanging some system elements at random and integrat-
ing new ones in the active structure. Connections between the system elements are deleted or new 
connections between two system elements are generated. Which one of these two operators is used, is 
also left to chance.  

4.2.3 Evaluation 
During the phase of evaluation, any principal solution of the population is assigned a value of fitness. 
The evaluation happens according to the three partial models “shape”, “function” and “behaviour”. 
The analysis of these three models results in a fitness value. Different aspects are revised in order to 
achieve this. A separate value of fitness is calculated for each partial model (f1, f2, f3). These three 
values add up to an overall fitness value fges:  

fges = g1 f1 + g2 f2 + g3 f3 (1) 

The weighing of the singular partial models can be altered by altering any of the three parameters g1 to 
g3. This is more closely described in the following: 
• Evaluation of the multi-body system: The multi-body system is simulated and the path of 

movement of the system is compared to the user’s predefined path. In order to achieve this goal, 
the supporting points on the proposed path are compared to the respective supporting points on 
the user defined path. The more pairs of supporting points are equal or close to equal, the higher 
the fitness value. Furthermore, the existence of control loops will be analysed. A control loop is 
predefined by several patterns and consists of a circle of system elements, which are assembled 
like this or in a similar way: basic mechanical system – sensor – controller – actor.  

• Evaluation of the functions: Two aspects are taken care of in the evaluation of the functions. 
First of all the functions themselves are checked. In step number three of the procedure dis-
played in Figure 2, the compatibility analysis was carried out, which creates a connection be-
tween the functions and the requirements. During the analysis, the number of existing functions 
is evaluated, which contribute to the compliance of the requirements. The more functions there 
are, the higher the fitness value will be. Further on the consistency among the connections be-
tween the functions is analysed. These connections match the connections between the system 
elements in the active structure. They too are defined by the four attributes described. During 
the analysis, it is checked, how many attributes of a connection are equal. 

• Evaluation of the assembly structure: It is also two aspects, which are looked at in order to 
evaluate the assembly structure. First off, the respective shape models are tested for collisions. 
The lower the amount of collisions, the higher the fitness value. What is also evaluated are the 
pairs of active surfaces. It is tested whether the size and effect direction of two adjoining active 
surfaces fits. 

All of the evaluations and fitness calculations are relative to the amount of existing components. The 
maximum value of fitness is 1.  

5 RESULTS 
To test the methodology, three software tool have been developed: These tools are the so called “Ge-
netic Designer”, the “Genetic Optimizer”, and “VxDynamik”. The tool “Genetic Designer” is used to 
specify the active structure. “VxDynamik” is used for the graphical representation of the assembly 
structure and for the simulation of the multi-body system. The tool “Genetic Optimizer” is the core 
part of the system. The evolutionary algorithm is implemented inside this tool as well as the whole 
process control. A XML-Interface is used for the communication between these tools. 
For the verification of the method an example from the area of vehicle technique was chosen. 89 dif-
ferent system elements are modelled for testing. Aim was to create a vehicle: The vehicle should be 
able to follow a pre-defined path, the dimension and the weight of the vehicle was limited. Beside a 
minimum speed and acceleration limit was defined. From the 89 system elements, only 32 could be 
used to build up a vehicle. 
The 89 system elements have been created for testing the algorithm, accordingly the optimal solution 
was known. This proceeding was chosen, because the performance of the of the algorithms should be 
checked this way. If an optima could be found can only be checked, if the optima is known. The sys-
tem elements was prepared, that only a few solutions are possible. Thereby the performance of the 
evolutionary algorithm could be tested: If the algorithm is able to find the useable system elements and 
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connect them to a suitable solution or the optima, the algorithm works. Additionally not all system 
elements could be used to fulfil the requirements. For example, some vehicle parts was created, that 
are to heavy and to big. System elements was created, that are not strong enough to drive the vehicle.   
To verify the method, an example is presented. As mentioned, objective was to create a vehicle. The 
starting system for the starting population was created by random. It is build up form 21 system ele-
ments. The system elements don’t result in a suitable solution. A section of the active structure is 
shown in figure 4.  
 

 
Figure 4: a) Section from the automatically produced active structure and b) representa-

tion of the assembly structure of the start system 

After 250 iterations the optimization process was stopped. Figure 5a shows the final active structure. 
The vehicle is build of 14 system elements. All used system elements a part of these set of system 
elements, which was modelled to build this vehicle. The vehicle fulfils all requirements. In the simula-
tion it is able to follow the predefined path. The achieved result correspond to one of the optimum 
solutions. Therefore the algorithm is able to find the useful system elements and to find the optima. 
Figure 5b shows the shape of the solution.   
In summary, the algorithm is able to create the four partial models functions, shape, behavior and ac-
tive structure. The four partial models support the engineers during the conceptual design and to create 
a principle solution. The algorithm is able to find the useful system elements in a set of system ele-
ments. In addition the algorithm is able to connect them into a suitable solutions.  
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Figure 5: The result of the automatic design process , a) active structure of the sketched 

system and b) a simple shape model 

 

6 OUTLOOK 
This article provide a work, which is a first step into the direction of automatically creation of the 
principle solution. It could be shown, that the method work and that it can create a solution for a given 
problem.  
The principle solution consists of seven partial models plus one group of behavior models. To create 
the whole principle solution, more partial models have to take into account by the evolutionary algo-
rithm. These are the partial models environment, scenarios and objectives.  
To get more practical solutions, the set of partial models, that are used, have to be extended. The sys-
tem elements  created until now could only be used for testing the performance of the algorithm.  The 
system elements have to become more complex and have to be like real elements and not only test 
elements. Then a “real world application” will be created. 
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