
ICED’07/588 1

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED’07

28 - 31 AUGUST 2007, CITE DES SCIENCES ET DE L'INDUSTRIE, PARIS, FRANCE

REQUIREMENTS-DRIVEN DESIGN COMPUTATIONS

IN NEXT-GENERATION CAD

Vikram Bapat1, Bernhard Bettig2 and Joshua Summers3
1Michigan Technological University, USA
2West Virginia University, USA
3Clemson University, USA

ABSTRACT
This paper discusses a new computational framework for requirements-driven automated design

synthesis that allows design changes to be accepted seamlessly from multiple stakeholders and the

computer software itself. The framework, based on declarative-variational mathematical

underpinnings, supports the systematic design process by using requirements as a basis for

coordinating designer and computer efforts. We define a design knowledge representation based on

the design exemplar that enables mapping a large set of real-world design requirements to a computer-

interpretable form. A new generic high-level algorithm that can apply requirements (exemplars)

simultaneously is proposed. As opposed to conventional rule-based production systems, which enforce

design requirements one at a time, this new algorithm is able to detect incompatibilities between

requirements by applying the requirements simultaneously.

Keywords: computer-aided design, automated design synthesis, requirements satisfaction, constraint

satisfaction, design exemplar technology

1 INTRODUCTION

Computer-Aided Design (CAD) software is used pervasively in the manufacturing industry to speed

up the creation, analysis and realization of products and it is difficult to imagine not using it.

However, current CAD software does little more than accept the input of designs that have already

been conceived by a designer; CAD software does not provide any help in actually conceiving

designs. We have argued that this limitation is inherently due to the mathematical framework on which

CAD software is implemented [1]. In this paper we propose a next-generation requirements-driven

CAD framework with declarative-variational [2] mathematical underpinnings that would enable a

design exploration process as shown in Figure 1. Here designers and all interested stakeholders

generate a set of requirements that are mapped to a computational representation and applied to the

computational system. At the same time engineering knowledge from domain experts is also applied

to the system, also expressed in the form of requirements. The requirements are combined seamlessly

within the computation system which can then synthesize alternative satisficing solutions.

Requirements can be posed in terms of dynamically applied algebraic, geometric, physical, and

semantic relationships, including requirements on attribute values and the existence of the design

objects and relationships themselves. The computation system allows designs to be under-constrained,

thus allowing for tweaking of the design by designers and the addition of new requirements. The

computation system also allows designs to be over-constrained and thus allows for the detection of

incompatible requirements. Examining the alternative solutions synthesized (and evaluated and

selected) by the computer, the designer can remove unanticipated deficiencies by further refining the

requirements, by either changing, adding or removing requirements. Once the requirements have been

sufficiently refined, attractive design solutions can be explored in greater detail by recursively

repeating this process.

This research tries to answer the question as to how can design requirements and knowledge be used

to generate and evaluate designs automatically? Rather than continuing to use the computer as an

analysis calculator or document recorder, we propose to use the deductive, algorithmic reasoning of

computational support to create a framework in which humans and computers can interactively reason

ICED’07/588 2

about the design problem, collaboratively generating, evaluating, and selecting among design

alternatives and iteratively refining the design requirements. In this paper we will address the three

fundamental aspects of the system as follows:

• The design exemplar data structure and how it can be used to represent design requirements.

• The generic exemplar algorithm and how it can be used to enforce design requirements one at a

time.

• A new generic high-level algorithm that can apply design requirements (exemplars)

simultaneously and detect incompatibilities in the requirements.

apply requirements

Automated Synthesis,
Evaluation & Selection

Generate
Requirements

Create
Knowledge

Tweak
Design

Explore
Design 1

Explore
Design 2

Explore
Design 3

Explore Design

refine designs

refine
requirements

Computer Designers Experts All three

Legend

obtain initial requirements

Figure 1. Requirements-Driven Design Exploration Process

2 REPRESENTING REQUIREMENTS USING THE DESIGN EXEMPLAR

2.1 Types of Requirements
Design requirements are defined as conditions or properties which are essential or requisite to the

design [3]. Design requirements are also defined as something that constrains the possible solutions of

a design problem to a subset of all possible designs [4]. Often, as in this paper, design constraints are

considered the same and used interchangeably with design requirements [3, 5, 6]. As well, for us

design specifications are the lists or collections of requirements of the product being designed. The

specification list defines the design problem, and as we solve for the design we modify the problem

itself be changing the specification in order to get a solution [3, 5]. At every stage of the systematic

design process, design requirements play an important role in defining the design task.

In order to be able to use requirements in a computational system, the requirements, which are

originally provided in human interpretable “natural language,” need to be represented in a computer

interpretable form. Until now, research has mainly been done in the field of requirements engineering.

This research has been concerned with four aspects of requirements management and is largely

domain independent. The research can be classified into the following broad areas as follows [7-9]:

1. How to elicit requirements [10-13] and validate them [14-16] by analyzing the specification to

check whether these are the ones the designers really want.

2. How to achieve Requirements Tracing [17-19]; i.e., trace requirements back to the originating

source as well as its subsequent use in the design.

3. Managing evolving requirements in a collaborative environment [20, 21].

4. Applications of managed requirements in evaluating and checking the design for satisfaction of

the requirements [22-24].

From a system engineering viewpoint, STEP AP233 standards [25] have been proposed and

encapsulate standards used for requirements management. Many commercial software’s like Telelogic

DOORS [26] and Teamcenter for systems engineering [27], which can work off these standards, are

ICED’07/588 3

available to assist the users in the above mentioned areas. Requirements management forms a very

crucial part of systems engineering. Efforts have also been made to study requirements management

covering the four broad areas discussed above and applied to automotive engineering [28].

Information modelling efforts to represent requirements [29, 30] do not provide support for linking the

requirements to detailed geometry and driving the creation of geometry. In the research presented in

this paper we do not concentrate on requirements management but on how the requirements managed

by the user can be effectively used to assist in mechanical design by computationally affecting the

creation of geometry and being linked to it. In this research, we are interested in the integration of

requirements with the “generate,” “evaluate” and “select” phases of every design stage throughout the

design process so that they can be driven automatically using the requirements as an input.

At a fundamental computational level we have found that the detailed requirements seem to fall into

three different types:

1. Requirements on Design Attributes

1.(a) Design attribute X must be equal to V

Here X is an attribute or property of the design that can be evaluated or can be directly observed and V

is a qualitative or quantitative value (loosely – an adjective) which can be absolute or can be an

attribute of other design(s) or design element(s). An example of a Type 1(a) requirement is “The

length of the truck cargo box must be 3700 mm”, or “the length of the cargo box must be the same as

the length of the cargo box from a competitor.” A key impact of Type 1(a) requirements is that they

take away degrees-of-freedom in the design. That is, one or more variables whose value could earlier

be chosen freely from a continuum of alternatives are now constrained to take on a controlled value.

 1.(b) Design attribute X must be greater than V

This is an inequality type of comparative expression. Here again V is (i) an absolute value, (ii) an

attribute of one other design or design element, or (iii) an attribute of a set of other designs or design

elements. For example, (i) “the length of the cargo box must be greater than 3700 mm,” (ii) “the

length of the cargo box must be greater than the length of the cargo box from a competitor,” or (iii)

“the length of cargo box must be greater than the lengths of cargo boxes from all competitors.” (Think

of “big,” “bigger,” “biggest.”) Although Type 1(b) requirements are also comparative requirements as

Type 1(a), they do not take away any degrees-of-freedom in the design, but instead only serve to

bound the design space.

1.(c) Design attribute X must be as great as possible

This requirement describes an objective. It can be stated in a number of different ways (e.g., “as low as

possible,” “as light as possible”). Type 1(c) requirements refer to design attributes as in Types 1(a) and

1(b) and in general are also specified with respect to a target value, which implicitly can be positive or

negative infinity. However Type 1(c) requirements have the interesting and unique ability to take

away degrees-of-freedom “en mass.” For example, in the requirement “the length of the cargo box

must be as great as possible” every free variable to which the length is sensitive will have all of its

degrees of freedom removed.

2. Requirements on the existence of objects and relationships

 2.(a) Design must have Y

Here Y is a feature, a component or some element of the design. Requirements expressed as “Design

must have Y” deal with the existence of objects. For example the requirement that “a truck must have

wheels, motor, cargo box and cab” deals with the existence of these objects. These requirements also

impact the existence of objects later in the design process, for example the existence of more detailed

objects such as the faces, edges and vertices that are necessary to describe the shapes of these

components.

2.(b) Design element Y1 must be R with respect to design element Y2

Here R is a relationship. This includes requirements such as “the cargo box must be PART OF the

truck” and “the line represents the GEOMETRY OF the road.”

3. Requirements on Function

 Product must do Z

Here Z is a function or action verb. These are the function or behavioural requirements (e.g., cargo box

must store goods). These are typically the most important requirements for mechanical devices but not

the only ones. For example aesthetic requirements on form and shape cannot be described using action

verbs, but necessitate using Type 1 and 2 requirements.

ICED’07/588 4

2.2 Mapping Design Attribute Requirements to Exemplars

2.1.1 Objects and Constraint Types

Type 1 requirements can be represented by constraints and objectives that control object attributes.

Current CAD systems are based only on equality type of constraints between geometric objects and

parameters, as shown in column two of Table 1 and can map only the Type 1(a) kinds of

requirements.
1
 However, to truly represent all kinds of Type 1 design requirements, constraints such

as those shown in all columns of Table 1 must be allowed [31-33]. Column 3, inequality constraints,

must be allowed in order to represent Type 1(b) requirements and column 4, objectives, must be

allowed in order to represent Type 1(c) requirements.

Table 1. Object and Constraint Types

Object Types Equality Constraints Inequality Constraints Objectives

(a) Algebraic
Variable Equation, Table Inequality Minimize, Maximize

(b) Geometric
Point, direction, line,

plane, circle, ellipse,

parabola, hyperbola,

cylindrical surface,

spherical surface, conical

surface, toroidal surface,

B-spline curve, B-spline

surface

DISTANCE, ANGLE,

RADIUS,

COINCIDENT,

INCIDENT,

TANGENT,

PARALLEL_OFFSET,

PARALLEL_DIRECTI

ON, RIGHT_ANGLE

ORDER_ON,

IN_FRONT_OF,

LEFT_OF,

ON_INDICATED_SIDE,

SAME_ORIENTATION,

ORIENTED_LEFT_OF,

(plus opposite versions of

these)

FARTHEST_FROM,

FARTHEST_IN_INDI-

CATED_DIRECTION,

CLOSEST_ORIENT-

ATION,

ORIENTED_MOST_

LEFT_OF (plus opposite

versions)

(c) Topological/Geometric
Vertex_point,

edge_curve,

face_surface, solid

LENGTH, AREA,

VOLUME, MOMENT

CONCAVE/CONVEX,

SMOOTH/SHARP,

INSIDE/OUTSIDE

2.1.2 The Design Exemplar

Although many Type 1 requirements apply directly to specific instances of design objects, more often

Type 1 design requirements apply to types of objects or certain situations (e.g., all wheels must be

tangent to the road) and must be applied dynamically as the design changes (e.g., as new wheels are

created in the design). Design exemplar technology provides a logical reasoning mechanism that can

be used in a declarative-variational environment to apply constraints and objectives automatically

where they are applicable. The design exemplar is a powerful, generic data structure developed to

represent geometric, algebraic, physical, and semantic design characteristics in design problems [31,

34, 35]. Designers, using exemplars, can find geometric properties (e.g. walls with a specific

thickness) in CAD models and then change these properties as needed (e.g. change the wall thickness

from 2.5 mm to 12.7 mm). In the exemplar graphical representation used below, round nodes are used

to represent objects and square nodes are used to represent relationships or constraints, which can be

unary, binary, or n-ary. Exemplars represent design characteristics by defining the objects and

relationships that must exist explicitly in the design model when the design has the given

characteristic. For example, the Designed_Offset_Faces exemplar shown in Figure 2(a) defines a

characteristic in which there exist in the design model two faces (f1 and f2), that have been explicitly

constrained by the designer to be offset from one another. Once an exemplar has been defined, a

pattern matching algorithm (e.g. [36]) can be executed to identify faces in the design that the designer

has offset. One difference of exemplars from conventional face adjacency graphs [66] and graph

grammars [37, 38] is that exemplars allow defining sub-graphs that repeat (repetition block), sub-

graphs that must not exist in the design (NOT block) and sub-graphs that can occur in different ways

(OR, XOR blocks).

An exemplar can also describe objects and relationships that are implicit in the design. For example,

Figure 2(b) shows an exemplar, “Offset_Faces,” in which two faces exist in the design that are

1
 I-DEAS is an exception because it allows variables to also be controlled by inequality expressions.

ICED’07/588 5

implicitly offset. That is, they happen to be offset in the design, but are not directly being controlled

to be so. To find instances of patterns with implicit relationships, pattern matching must be combined

with solving and evaluating constraints. Specialized domain-specific solvers are called by a generic

solving algorithm (see [31, 39] for complete details on the generic solving algorithm and supported

solvers). Implicit objects and relationships are shown with dashed lines in the exemplar graph.

Face f1

Face f2

PARALLEL_OFFSET

Explicit

Face f1;

Face f2;

PARALLEL_OFFSET (f1, f2)

Face f1

Face f2

PARALLEL_OFFSET

Explicit

Face f1;

Face f2;

Implicit

PARALLEL_OFFSET (f1, f2)

Explicit

Face f1;

Face f2;

Explicit (Valid Only)

PARALLEL_OFFSET (f1, f2)

Explicit (Invalid Only)

NOT BLOCK

PARALLEL_OFFSET (f1, f2)

Face f1

Face f2

PARALLEL_OFFSET

“Valid” Component

Face f1

Face f2

PARALLEL_OFFSET

NOT

“Invalid” Component

“Designed offset faces”

(a)

“Offset faces”

(b)

Complete “Designed offset faces”

(c)

Figure 2. (a) Exemplar for “Designed offset faces” (b) Exemplar for “Offset_Faces” (c)

Exemplar for Complete “Designed offset faces”

Besides distinguishing explicit and implicit characteristics, an exemplar also distinguishes what a

design is like when it has the described characteristic and when it does not. For example, Figure 2(c)

shows an exemplar distinguishing between faces that have been designed to be offset and those that

have not. The “valid” and “invalid” parts of an exemplar describe the two situations: valid, the

identified faces are explicitly designed to be offset, and invalid, the identified faces are not explicitly

designed to be offset. The “valid” and “invalid” components enable modifying or enforcing a design

characteristic in terms of both the existence of objects and the values of attributes. The exemplar

algorithm works somewhat like a graph grammar production system [37, 40] in that the graph from

one component is recognized in the design graph using a sub-graph isomorphism algorithm (with

evaluation of any implicit relationships). Matches that are found in the design of the invalid

component are converted to the valid component (or vice versa) by adding and removing explicit

objects and relationships and enforcing any implied relationships. Modifications can include changing

values (e.g., modify hole diameters) or changing existence (e.g., add or delete hole features).

So far, exemplars have been used for single task problems [31, 41-45] such as (i) identifying design

objects with a given characteristic (e.g. undercut faces), (ii) evaluating design properties (e.g. length of

a duct), (iii) validating designs (e.g. not too big), (iv) comparing two designs with respect to a

characteristic, and (v) modifying a design (e.g. to have or not have a fillet). This research is the first

time that the design exemplar has been considered for use in automated design synthesis.

2.1.3 Composite Constraints and Dynamically Applied Constraints

Composite constraints are required in order to express, in a comprehensible way, requirements that can

only be expressed as system of constraints. For example, a requirement that distance between two

objects be greater than a specified value has to be expressed using a set of two primitive constraints: a

DISTANCE constraint and an algebraic inequality expression.

In some instances a design requirement can be easily described by a single geometric constraint, but it

is not known ahead of time which objects are the ones on which the constraint should be applied. For

example, a constraint on the overall length of a part can be imposed by a constraint DISTANCE

(object_1, object_2, distance_measure) where distance_measure is the distance between object_1 and

object_2, which are at opposite ends of the part. The objects referenced by this constraint could

change as the design progresses, as occasionally different objects become the end objects. Figure 3(a)

shows an example of a situation where this can happen. If we require the overall length to be

maintained to be less than or equal to 10 units then as the shape changes, the DISTANCE constraint

ICED’07/588 6

must be applied to different objects. A dynamic composite constraint must provide rules to identify

which objects are the ones that should be constrained. This makes the constraint much more

complicated but can be implemented using exemplars as shown (compressed) in Figure 3(b).

overall_length
DISTANCE(L1, L2, overall_length)

overall_length ≤ 10

L1 L2

L3 L4

L1 L2

overall_length
DISTANCE(L3, L4, overall_length)

overall_length ≤ 10

Left Right

invalid

NOT NOT

Left Right

OVERALL_LENGTH

OVERALL_LENGTH > 10

DISTANCE

Edge A Edge B

ON ON

Point A Point B

Point C Point D

ON
ON

Edge C Edge D

ON_SIDE

valid

NOT NOT
Left Right

OVERALL_LENGTH

OVERALL_LENGTH ≤ 10

Edge A Edge B

ON ON

Point A Point B

Point C Point D

ON
on

Edge C Edge D

ON_

SIDE

DISTANCE

ON_

SIDE

ON_SIDE

 (a) (b)

 Figure 3.(a) Overall Length constraint acts on different objects as shape changes (b) The

dynamically applied “overall length” constraint implemented using an exemplar

2.3 Mapping Existence Requirements to Exemplars
In order to represent Type 2 requirements in a computational representation we must also be able to

somehow express requirements on the existence of objects and relationships. Figure 4 shows the

exemplar used to enforce the requirement that the geometry of a wheel be added to the design if an

object of type “Wheel” exists in the design. In general the exemplar algorithm will enforce that the

design stays with the “valid” and not the “invalid” for whatever exemplars are given. Hence when the

algorithm detects that an object called wheel exists it will try to make the design valid by adding the

geometry for wheel into the design if necessary.

Figure 4. Exemplar for “Wheel Elaboration” Figure 5. Application of Technical Principle for the

“Propels” Function

2.4 Mapping Function Requirements to Exemplars
Requirements like “Assemble and Glue cartons” and “Count number of cartons” are requirements on

the function of a design. In systematic design, requirements on function of the Type 3 must map to

alternative function structures, which must map to alternative technical principles, which must map to

alternative embodiments in order to realize a design [3]. The embodiments ultimately seem to map to

specific requirements on what the design must have and must be (i.e., Type 3 requirements ultimately

seem to map to Type 1 and 2 requirements).

Let us consider the requirement on function that, “motor must propel truck” for the design of a truck.

As shown on the left side of Figure 5, the functional requirement “motor must propel truck” can be

expressed as a relationship that must be enforced between the motor object and the truck object.

Without elaborating on the meaning of the “propel” concept it is possible to define allowable solution

Motor

propels

Truck

ONE_OF

Electric_motor_principle

has

IC_engine_principle

“Invalid” (not
elaborated) “Valid” (elaborated)

Motor

Motor

propels

propels

Truck

Truck

has

Exemplar Motor_Technical_Principle_Applied

Exemplar Basic_elaborated_wheel_geometry

“Invalid” (not elaborated) “Valid” (elaborated)

NOT

geometry_of
Circle Circle

geometry_of

Wheel Wheel

ICED’07/588 7

principles, one of which must be chosen if the product is to be realized.
1
 These are shown on the right

hand side of Figure 5. In turn, each of the solution principles can have another exemplar elaborating it

with possible embodiments.

3 ENFORCING DESIGN REQUIREMENTS ONE AT A TIME

The existing generic exemplar algorithm can be applied manually to enforce requirements one at a

time [31]. The user first selects the requirement (exemplar) to be applied and then presses the “Find”

button to highlight the next occurrence of the invalid component of this exemplar in the design. If an

occurrence is found, pressing the “Change” button causes the algorithm to remove from the design

objects and relationships that are only in the invalid component, and add objects and relationships that

are only in the valid component. Objects and relationships that are explicit are added permanently

whereas objects and relationships that are implicit are added temporarily until the whole system has

been solved using a generic propagation-based constraint satisfaction solver that calls domain-specific

subsystem solvers [31].
2
 The next invalid occurrence is then highlighted automatically and “Change”

can be pressed again right away. This process can be repeated until all occurrences have been handled

or, alternatively, the “Change All” button can be pressed to change all of the occurrences, one at a

time. This procedure can then be repeated with a different exemplar. Though this process is easier

than creating objects and relationships manually, and allows standardizing how “requirements” are

applied, it is still not automated design synthesis and it is still possible to apply a design change that

invalidates a previously applied requirement.

4 APPLYING REQUIREMENTS SIMULTANEOUSLY

Many automated design synthesis systems exist. Automated design synthesis systems produce

candidate solutions that are later analyzed, refined and tested automatically[46-48]. One approach to

automated design synthesis is known as function-based synthesis, where an abstract functional

description for a device is transformed into a structural description that satisfies the functional

requirements [49]. In function-based synthesis the design decisions are driven by the function of the

final design through the theory of functional reasoning where the design structure consists of a set of

geometric objects (features and parts) and a set of functions [50]. Each geometric object facilitates its

own set of functions and the geometric objects may be combined to provide more complex functions

[51]. To generate the design, one must find or construct a structure that has the necessary functions

[52]. Systems based on functional reasoning are limited in that they have difficulty performing

reasoning with combinations of objects. Solutions in which the intended function is facilitated by a

combination of objects are not identified [50]. Other approaches to design synthesis do not consider

the function of the design explicitly but include it implicitly in rules or procedures (e.g. [53]).

Rule-based methods for design synthesis create candidate designs by applying pre-defined operations

one after the other to build up designs. The sequence of operations may or may not be pre-defined,

but an operation can only be applied if its pre-conditions are met. Directed search algorithms drive

designs towards characteristics that best meet the given set of design objectives, by varying the

operation sequence. One sub-class of rule-based design methods is grammatical design in which a

grammar, consisting of a vocabulary of elements, a set of rules, and an initial structure, transforms

structured arrangements of elements into new structures [54]. Design using grammars involves

recursively selecting transformation rules and applying them to a candidate structure, until a final

structure that satisfies design requirements emerges [55]. In “shape grammars,” the vocabulary

elements are symbols, that is, shapes made up of points and lines. In “graph grammars,” the

vocabulary elements are different types of nodes and edges. Grammars have been utilized to create

spatial and architectural designs [56, 57], mechanisms [58, 59], and machinable feature models [38] .

Other rule-based methods for design synthesis have been presented by [60] and are represented by

powerful commercial knowledge-based systems such as ICAD [61] and Knowledge Fusion [62].

These systems provide a general programming language for defining rules; specifying when the rule is

1
 We make an assumption that there are only a finite number of solution principles for any given function and

that these can be identified ahead of time in design catalogs. This assumption is justified for practical purposes

since if a solution principle is not known it cannot be used.
2
 This is the intended approach. The currently implemented constraint solver only satisfies the valid component

of the exemplar without considering the rest of the design.

ICED’07/588 8

applicable and what action is performed. These systems can create geometry or flag design problems.

Rule-based systems have the ability to deal with the physical rather than the abstract form but still they

are inherently parametric by nature. However, rule based systems still apply requirements one at a

time.

4.1 Proposed Methodology
 To generate valid designs, two types of knowledge are required: design refinement knowledge

and design validation knowledge. Design refinement knowledge defines the details that correspond to

a more abstract object. These details must be created and added to the design by the synthesis

methods. This allows the design to be elaborated and to progress from one state to another. Figure 6

shows design exemplars that characterize an elaborated truck and an elaborated cargo box. To enforce

these characteristics, the synthesis engine must create the missing objects: Cargo_box, Wheel_set,

Cab, and Motor. Note that the Wheel_set is in a repetition block, with an unspecified number of

repetitions (except that the minimum is two). Because the number of wheel sets is under-defined, a

variety of solutions can result, as shown in Figure 7.
 Exemplar Truck_Elaboration

“False” (not elaborated) “True” (elaborated)

NOT

Truck

part_of

Rep: [2,?]

Cargo
_Box

Wheel
_set

Cab Motor

part_of

Rep: [2,?]

Cargo
_Box

Wheel
_set

Cab Motor

Truck

Cargo_Box

Exemplar Cargo_Box_Elaboration

“False” (not elaborated) “True” (elaborated)

NOT

ID_
right

Line Line Line Line

geometry
_of

ID_top ID_
bottom

ID_left

Line Line Line Line

geometry
_of

ID_top ID_
bottom

ID_left ID_
right

Cargo_Box

(a) Truck Elaborating Exemplar (b) Cargo Box Elaborating Exemplar

Figure 6. Truck Refinement Exemplars (Simplified)

Soln. 3. Soln. 2. Soln.1.

Cargo_box

Wheel_set

Motor

Cab

Figure 7. Three Possible Solutions from Truck Refinement

geometry_of
Cargo_Box

ID_bottom
Line

Tangent

Circle
geometry_of

Wheel

Exemplar wheel_below_truck
Other validation exemplars

 bottom_of_cargo_box_and_motor_lined_up

 all_truck_parts_connected

 wheels_not_touching

 clear_view_in_front_of_cab

Figure 8. Validation Exemplars (Simplified)

Design validation knowledge must be used to control the validity of a design with respect to good

design practice, available sizes of material, natural laws governing design behavior, etc. For example,

to control the positions of the truck elements from Figure 7, validity requirements (Figure 8) are

applied. To solve the implicit “tangent” geometric constraint between design objects, the geometric

solving algorithms are used. Applying the validity requirements to Solution 1 from Figure 7, results in

several solutions as shown in Figure 9, some of which may be novel or may lead the designer toward a

novel design.

4.2 Proposed Algorithm
Two approaches are typically employed in design synthesis systems: a sequenced production system

of rules (rule chaining) and unordered application of rules (graph grammars). Both approaches apply

sequential design changes as shown in Figure 10(a) which illustrates the application of a series of

ICED’07/588 9

mapped requirements (R0, R1, R2) one at a time to generate a design solution based on an initial

design model (M0).This is typical of a graph grammar approach of applying a sequence of rules,

modifying an initial model into a final solution.

Solution 1a Solution 1c Solution 1d Solution 1e

Figure 9. Alternative Solutions after Applying Validity Requirements

Here, the rules may be repeated or reordered. The manual application of the generic exemplar

algorithm also employs this approach. Figure 10(b) shows a new generic high-level algorithm we hope

to implement which applies design requirements simultaneously and detect incompatibilities in the

requirements. Rather than applying discovered changes incrementally as with graph grammars and

current knowledge-based systems, the algorithm records a set of proposed changes, compares them

with each other for consistency, and then applies them, effectively executing the exemplar algorithm

simultaneously for many different requirements. This declarative-variational synthesis approach is

given by the following steps:
1. For each requirement exemplar, Rm, test the applicability to the same current model, Mi, and store

applicable changes in Mi-j.

2. Compare all in Mi-j with each other to detect incompatible object additions or deletions. Stop if there is an

incompatibility.

3. Apply stored changes to Mi to get Mi+j. Perform constraint satisfaction to obtain attribute values. Re-

evaluate applicable Rm to see if they are still valid. Stop if there is an incompatibility.

4. Repeat until no more Rm are applicable.

M0 R0 M1

M1 R1 M2

M2 R2 M3

Check

Validity

F

Select New

Sequence

T

DONE

Check

Validity

F

Found Traceable

Requirement Conflict

T

More

Requirements

M0 R0 M1-0

M0 R1 M1-1

M0 R2 M1-2

 (a) (b)

Figure 10. (a) Graph Grammar Synthesis (b) Requirements-Driven Variational Synthesis

5. DISCUSSION

 As a result of this research the activities of synthesis, evaluation, and selection in the systematic

design process will be supported in a common framework. Once prototype software has been created

we expect that novel solutions will arise both automatically and through designer initiative:

1. Automatically during object synthesis, as different configurations are created by the computer,

2. Automatically in constraint solving, when choosing from multiple solutions, or choosing

solution values from a range of possible values,

3. Through the designer, as design requirements are added, removed or modified, and

4. Through the designer changing assumptions or restrictions in the engineering knowledge,

ICED’07/588 10

5. Through ideas that might be sparked in the user’s mind when seeing an odd configuration

generated by the computer.

The paradigm of requirements driven computations is expected to be a vital part of next-generation

CAD systems. Besides promoting innovative designs, the use of knowledge-bases will promote safer,

less costly products with fewer design errors. The use of requirements as a basis for collaboration will

also reduce instances in which design modifications detrimentally impact the intent of earlier design

decisions.

ACKNOWLEDGEMENT
The authors gratefully acknowledge support for this research from the National Science Foundation

(grant CMMI 0638393).

REFERENCES
[1] Bettig, B., Bapat, V. and Bharadwaj, B. Limitations of parametric operators for supporting

systematic design. CDROM Proceedings DECT-2005, ASME International Design

Engineering Technical Conferences, September 24--28, Long Beach, California, USA, 2005.

[2] Chung, J.C.H. and Schussel, M.D. Technical Evaluation of Variational and Parametric

Design. Computers in Engineering, 1990, 1, 289-298.

[3] Pahl, G. and Beitz, W. Engineering Design : A systematic Approach. (Springer, 1995).

[4] Ullman, D.G. The Mechanical Design Process. (McGraw-Hill, 2002).

[5] Cross, N. Engineering Design Methods. (John Wiley &Sons New York, 1989).

[6] Dixon, J.R. and Poli, C. Engineering Design and Design for Manufacturing. (Field Stone

Publishers, Conway, Massachusetts, 2000).

[7] Maiden, N. What has requirements research ever done for us? Ieee Software, 2005, 22(4), 104-

105.

[8] Wieringa, R., Maiden, N., Mead, N. and Rolland, C. Requirements engineering paper

classification and evaluation criteria: a proposal and a discussion. Requirements Engineering,

2006, 11(1), 102-107.

[9] Bashar, N. and Steve, E. Requirements engineering: a roadmap. Proceedings of the

Conference on The Future of Software Engineering (ACM Press, Limerick, Ireland, 2000).

[10] Jacobs, G. and Ip, B. Establishing user requirements: incorporating gamer preferences into

interactive games design. Design Studies, 2005, 26(3), 243-255.

[11] Hammori, M., Herbst, J. and Kleiner, N. Interactive workflow mining - requirements,

concepts and implementation. Data & Knowledge Engineering, 2006, 56(1), 41-63.

[12] Dag, J.N.O., Thelin, T. and Regnell, B. An experiment on linguistic tool support for

consolidation of requirements from multiple sources in market-driven product development.

Empirical Software Engineering, 2006, 11(2), 303-329.

[13] Arthur, J.D. and Groner, M.K. An operational model for structuring the requirements

generation process. Requirements Engineering, 2005, 10(1), 45-62.

[14] Gorschek, T. and Wohlin, C. Requirements abstraction model. Requirements Engineering,

2006, 11(1), 79-101.

[15] Gnesi, S., Lami, G., Trentanni, G., Fabbrini, F. and Fusani, M. An automatic tool for the

analysis of natural language requirements. Computer Systems Science and Engineering, 2005,

20(1), 53-62.

[16] Katasonov, A. and Sakkinen, M. Requirements quality control: a unifying framework.

Requirements Engineering, 2006, 11(1), 42-57.

[17] Hayes, J.H., Dekhtyar, A. and Sundaram, S.K. Advancing candidate link generation for

requirements tracing: The study of methods. Ieee Transactions on Software Engineering,

2006, 32(1), 4-19.

[18] Jane, C.-H. Toward improved traceability of non-functional requirements. Proceedings of the

3rd international workshop on Traceability in emerging forms of software engineering (ACM

Press, Long Beach, California, 2005).

[19] Balasubramaniam, R., Curtis, S., Timothy, P. and Michael, E. Requirements traceability:

Theory and practice. Ann. Softw. Eng., 1997, 3, 397-415.

[20] Yang, H.S., Kim, M., Park, S.Y. and Sugumaran, V. A process and tool support for managing

activity and resource conflicts based on requirements classification. Natural Language

ICED’07/588 11

Processing and Information Systems, Proceedings, 2005, 3513, 114-125.

[21] William, N.R., Suzanne, D.P. and Vecheslav, V. Requirements interaction management. ACM

Comput. Surv., 2003, 35(2), 132-190.

[22] Damian, D., Chisan, J., Vaidyanathasamy, L. and Pal, Y. Requirements engineering and

downstream software development: Findings from a case study. Empirical Software

Engineering, 2005, 10(3), 255-283.

[23] Jiau, H.C. and Yu, D.F. Comments on "Automatic analysis of consistency between

requirements and designs". Ieee Transactions on Software Engineering, 2006, 32(4), 279-280.

[24] Feather, M.S., Cornford, S.L., Hicks, K.A. and Johnson, K.R. Applications of tool support for

risk-informed requirements reasoning. Computer Systems Science and Engineering, 2005,

20(1), 5-17.

[25] TC184/SC4, I. ISO 10303-233, STEP Part 233, Application protocol: Systems engineering

data representation (International Organization for Standardization, 2005).

[26] Telelogic. Telelogic DOORS - Requirements managements for co-located teams. (Telelogic

AB, 2006).

[27] UGS. UGS: Teamcenter solutions by product : Systems Engineering. (UGS Corp., 2006).

[28] Almefelt, L., Berglund, F., Nilsson, P. and Malmqvist, J. Requirements management in

practice: findings from an empirical study in the automotive industry. Research in

Engineering Design, 2006, 17(3), 113-134.

[29] Schachinger, P. and Johannesson, H.L. Computer modelling of design specifications. Journal

of Engineering Design, 2000, 11(4), 317-329.

[30] Balmelli, L. and Moore, A. Requirements Modeling for System Engineering Using SYSML,

The Systems Modeling Language. Proceedings of DETC, Computers & Information in

Engineering Conference, 2004.

[31] Bettig, B. A Graph-Based Geometric Problem Solving System for Mechanical Design and

Manufacturing. Mechanical and Aerospace Engineering (Arizona State University, Tempe,

AZ, 1999).

[32] Bettig, B. and Shah, J. Derivation of a standard set of geometric constraints for parametric

modeling and data exchange. Computer-Aided Design, 2001, 33(1), 17-33.

[33] Bettig, B. and Shah, J. Solution selectors: A user-oriented answer to the multiple solution

problem in constraint solving. Journal of Mechanical Design, 2003, 125(3), 443-451.

[34] Summers, J.D., Shah, J.J. and Bettig, B. The Design Exemplar: A New Data Structure for

Embodiment Design Automation. Journal of Mechanical Design, 2004, 126(5), 775-787.

[35] Anandan, S., Bettig, B., Summers, J., Maier, J. and Bapat, V. Semantics in Engineering

Design. International Conference on Engineering DesignParis, France, 2007).

[36] Joshi, S. Feature Recognition and Geometric Reasoning for some Process Planning Activities.

In Wozny, M.J., Turner, J.U. and Preiss, K., eds. Geometric Modeling for Product

Engineering, pp. 363-384 (Elsevier Science Publishers, North-Holland, 1990).

[37] Schmidt, L.C. and Cagan, J. GGREADA: A graph grammar-based machine design algorithm.

Research in Engineering Design-Theory Applications and Concurrent Engineering, 1997,

9(4), 195-213.

[38] Fu, Z., Depennington, A. and Saia, A. A Graph Grammar Approach to Feature Representation

and Transformation. International Journal of Computer Integrated Manufacturing, 1993, 6(1-

2), 137-151.

[39] Summers, J.D. Development of a Domain and Solver Independent Method for Mechanical

Engineering Embodiment Design. Mechanical and Aerospace Engineering, p. 286 (Arizona

State University, Tempe, 2004).

[40] Fu, Z. and Depennington, A. Geometric Reasoning Based on Graph Grammar Parsing.

Journal of Mechanical Design, 1994, 116(3), 763-769.

[41] Bettig, B., Shah, J.J. and Summers, J.D. Geometric Exemplars: A Bridge Between AI and

CAD. In Wozny, ed. From Knowledge Intensive CAD to Knowledge Intensive Engineering,

pp. 13-25 (Kluwer Academic Press, the Netherlands, 2001).

[42] Summers, J.D., Bettig, B. and Shah, J.J. The design exemplar: A new data structure for

embodiment design automation. Journal of Mechanical Design, 2004, 126(5), 775-787.

[43] Summers, J.D., Lacroix, Z. and Shah, J.J. Case-Based Design Facilitated by the Design

Exemplar. In Gero, J., ed. International Conference on Artificial Intelligence in Design, pp.

ICED’07/588 12

pp. 453-476 (Kluwer Academic Press, Cambridge, UK, 2002).

[44] Summers, J.D. and Shah, J.J. The Design Exemplar: A New Data Structure for Design

Automation. (Design Automation Lab, Arizona State University, Tempe, AZ, 2001).

[45] Summers, J.D. and Shah, J.J. Exemplar Networks: Extensions of the Design Exemplar. In

ASME, ed. Design Engineering Technical Conferences, pp. CIE-57786 (Computers in

Engineering, Salt Lake City, UT, 2004).

[46] Antonsson, E. and Cagan, J. Formal Engineering Design Synthesis. (Cambridge University

Press, Cambridge, UK, 2001).

[47] Bryant, C., McAdams, D., Stone, R., Tolga, K. and Campbell, M. A Computational Technique

for Concept Generation. Design Engineering Technical Conferences, pp. DTM-85323

(ASME, Long Beach, CA, 2005).

[48] Rajagopalan, V., Bryant, C., Johnson, J., McAdams, D., Stone, R., Kurtoglu, T. and Campbell,

M. Creation of Assembly Models to Support Automated Concept Generation. Design

Engineering Technical Conferences, pp. DTM-85302 (ASME, Long Beach, CA, 2005).

[49] Chandrasekaran, B. Design Problem Solving: A Task Analysis. AI Magazine, 1990, 11(4),

59-71.

[50] Ligman, D. DEIMOS: A Functional Paradigm for Mechanical Design. International

Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert

Systems, pp. 773-780Charleston, SC, 1990).

[51] Freeman, P. and Newell, A. A Model for Functional Reasoning in Design. Second

International Joint Conference on Artificial Intelligence1971).

[52] Kurtoglu, T., Campbell, M., Joah, G., Bryant, C., Stone, R. and McAdams, D. Capturing

Empirically Derived Design Knowledge for Creating Conceptual Design Configurations.

Design Engineering Technical Conferences, pp. DTM-84405 (ASME, Long Beach, CA,

2005).

[53] Fitzhorn, P. Engineering Design as a Computable Function. Artificial Intelligence for

Engineering Design, Analysis, and Manufacturing, 1994, 8, 35-44.

[54] Gips, J. and Stiny, G. Production Systems and Grammars: A Uniform Characterization.

Environment and Planning, 1980, 7, 399-408.

[55] Brown, K. Grammatical Design. IEEE Intelligent Systems, 1997, 12(2), 27-33.

[56] Gips, J. and Stiny, G. Shape Grammar and Generative Specification of Painting and Sculpture.

Information Processing, 1972, 71, 1460-1465.

[57] Agarwal, M. and Cagan, J. On the Use of Shape Grammars as Expert Systems for Geometry-

Based Engineering Design. Artificial Intelligence in Engineering Design, Analysis, and

Manufacturing, 2000, 14, 431-439.

[58] Schmidt, L. and Cagan, J. Optimal Configuration Design: An Integrated Approach Using

Grammars. Journal of Mechanical Design, 1998, 120(1), 2-9.

[59] Schmidt, L., Shetty, H. and Chase, S. A Graph Grammar Approach to Mechanism Synthesis.

Journal of Mechanical Design, 2000, 122, 371-376.

[60] Dixon, J. Knowledge-Based Systems for Design. Transactions of ASME, Special 50th

Anniversary Design Issue, 1995, 117(11).

[61] KTI. Knowledge Technologies International: KTI Home Page. (Knowledge Technologies

International, 2004).

[62] UGS. UGS - Product Life Cycle Management Solutions. (UGS, 2005).

Contact: Bernhard Bettig

West Virginia University Institute of Technology

Department of Mechanical Engineering

405 Fayette Pike,

Montgomery, WV 25136

USA

Tel: Int +1 304 442 3289

E-mail: Bernhard.Bettig@mail.wvu.edu

