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ABSTRACT
Understanding of the risk and reliability of systems can be enhanced by modeling the grayscale

degradation of the performance of components and determining the grayscale impact on the system
performance. Rather than producing an estimate of the probability of the system being in either the
working or the failed state, as more traditional risk and reliability modeling does, this approach produces
estimates of the probability of the system being in any of a continuous range of states between fully
working and completely failed.

The development of the approach is outlined and illustrated by an example.
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OBJECTIVES
Every product has inherent failure modes and impacts of those failures. Products also typically have
required or desired system reliability specifications. The most readily available reliability data is on
component behavior (typically including statistical predictions of performance degradation). Therefore,
it would be useful to be able to develop predictions of system degradation and failure based on component
statistics. Currently, two distinct approaches are used for analyzing robustness and reliability of system
performance by propagating the states of components: probabilistic risk assessment (PRA) and robust
design techniques.

Probabilistic risk assessment was developed by the nuclear industry for analyzing system reliability
when component failures consist of low probability but catastrophic events [1, 2]. The PRA method, and
its variants such as binary decision diagrams [3, 4], dynamic fault trees [5], and stochastic petri nets [6]
propagate the binary (working or failed) state of components into a binary state of system. To use these
methods, the engineer must first convert a model of the dynamics of system into a simplified model that
includes only two states.

In contrast, robust design techniques, such as Taguchi’s method, were developed to analyze systems
for performance loss caused by manufacturing and operational variations [7, 8]. In Taguchi’s method,
the Quality Loss function is continuous, and is modeled as a parabola. This method considers the per-
formance of a system at a particular time (usually at beginning of the product life) and does not consider
the time-evolution of the system performance.

These methods are sufficient for industry that is concerned with minimizing the probability of catas-
trophe (e.g., the nuclear industry) or minimizing the performance variation caused by uncontrolled man-
ufacturing variations (e.g., the automotive industry). However, when analyzing aerospace missions, both
the degree of system degradation and the time dependence of system degradation is important. This paper
reviews the development of a new approach for computing and analyzing the continuous (or grayscale)
changes to the performance of a system, given the expected degradation of its components over the time.
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METHOD
The new approach presented here for analyzing the overall impact of component degradation on system
performance consists of three steps: modeling the stochastic component degradations; obtaining the per-
formance degradation caused by the degradation of the components, and combining the changes in each
individual performance into an overall system impact (see Figure 1). Explicit component degradation
models and performance models are input to this method and are assumed to be obtainable. Many re-
searchers in reliability engineering focus on a Bayesian approach for obtaining binary component failure
models, that could be extended to the grayscale component degradation models required in the method
presented here. Currently, the performance model used in this method is a assumed to be the same model
used for designing the nominal system. However, to increase computational efficiency, performance
models could be approximated using methods such as response surface methods.
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Figure 1: Propagation of Degradation from Components to System

To make the system impact into a grayscale (or continuous) quantity, the component degradation
must also be non-binary (continuous). Thus, the first step is to define the degradation of the compo-
nents as a continuous stochastic process of each design variable, rather than a probability distribution for
catastrophic failure as a function of time. When designing the system, the state of components is defined
by design variables over a design space, and therefore this is natural extension for representing the de-
grading state of components. These stochastic processes should include gradual change of each design
variable over time as well as catastrophic failures. The most common stochastic process is a combina-
tion of Brownian motion with a drift that represents each degradation mode, and a catastrophic failure
probability. The drift represents the average degradation path for a particular mode of degradation and it
could be a function of time as well as path/history dependent. Brownian motion represent the stochastic
nature of degradation. Rather than Brownian motion, the stochastic process could also have a skewed
distribution that is time and space dependent, however, this complexity is not illustrated here. Also, a
repairable system could have the performance of one or more components described by a jump process
that allows the performance to jump from a failure state to a working state. These are illustrations of the
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possible richness of the representation of the degradation of components.
Given the component models of the first type described above, and using dynamic simulations of

system behavior, a probability distribution for system performance(s) over time can be obtained for all
required system attributes. These system performances over time can be converted into performance
degradations as function of time (Xi(t)) by comparing them to requirements and incorporating designer
and customer preferences. The resulting performance degradation function has the property that it is
equal to 0 when it the system is performing perfectly, and it is equal to 1 when the performance does not
meet the required specification, leading to system failure. This conforms to the convention for Fault Tree
Analysis where 1 represents failure.

Finally, each individual performance degradation must be combined into a single system impact,
which represents a measure of overall system performance degradation Xsys. Following the axioms of
rationality described by Tribus [9], the system impact as a function of the performance degradation must
have the following properties:

1. bounded between [max{Xi ∀i}, 1]

2. monotonic with respect to all Xi

3. continuous with respect to all Xi

4. if ∃i such that Xi = 1, Xsys = 1

These are similar to axioms of aggregation functions for preferences in the Method of Imprecision
(MoI) [10, 11]. Mathematically, the system impact and performance degradations act like complements
of the preferences.

These criteria come from the observation that the aggregation of continuous (fuzzy) performance
requirements forms a type of fuzzy OR gate. Because of possible coupling between the degradation
of many individual performances, the catastrophic failure surface (which is defined as {(x1, ..., xn) :
Xsys(x1, ...xN ) = 1}) must be specified by the engineering designer. This catastrophic failure surface
can be obtained using a technique similar to the elicitation of indifference points in the Method of Impre-
cision [12]. Given this failure surface, Xsys can be extended to the entire domain using non-intersecting
contours of impact. Examples of possible aggregation schemes are illustrated in Figure 2.
The max represents the least conservative aggregation, implying that system degradation is the same as
the worst performance degradation. The truncated sum represents the most conservative aggregation.
The complement of the product of the complement is a probabilistic fuzzy OR function and has the
property that it is similar to the max function when one performance degradation is near 1, and similar
to the truncated sum when all of the performance degradations are small.

By propagating the degradation of components into an overall system performance degradation, the
grayscale (continuous) system impact as a function of time can be obtained. This system impact uses the
actual dynamics of the computational model used for designing the system, rather than a simplified fault
diagram or tree, and allows nonlinear effects of coupling among degradations to be more easily captured.
In some (rare) cases some of the degradation modes could even help improve system performance(s).
Finally, the designer can compare grayscale system impact with a grayscale reliability requirement to
determine when the system is likely to be in an excessively degraded state, and which components
contribute most to the likelihood of each degraded state of the system.

RESULTS
As an illustrative example, the degradation of a mass-spring-damper system is analyzed. The governing
equation for this system is given by:

Fext(τ)− k(t)x(τ)− b(t)ẋ(τ) = mẍ(τ) (1)

where Fext is an external force, k is the spring constant, b is the damping constant, m is mass, and x is
displacement. Both k and b degrade over the time, but at much longer time scale than the time dependence
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for x (i.e., t is a few orders of magnitude larger than τ ). Thus, k and b are assumed to be constant for
calculating the system performance at any given time t. The stiffness k of springs and the damping
constant b of the dampers degrades as function of time as shown in Figure 3. Each distribution is a
combination of a random walk with two drifts (one describing the case for becoming stiffer and other for
becoming softer) and an exponential distribution for catastrophic failure. The probability of catastrophic
failure is represented by the strip at k = 0 and b = 0, which increases over time, as expected. Even
though this system is a simple system to model, the interaction of different modes of degradation for the
springs and dampers gives some insight into the complex interactions between component degradations
and system performance, and therefore why this method is important to providing a clear understanding
of system reliability.

The next step is defining a performance degradation function, which is derived from the following
performance specifications: the upper bound on the maximum amplification of the amplitude of oscil-
lation of the mass, an upper bound on the maximum amplification frequency, and a lower bound on the
damped natural frequency as shown in Figure 4. Having a continuous membership function represent the
degree of performance degradation allows the definition of states where the performance of the system
is marginally acceptable. For example, the bottom plot in Figure 4 shows that the designer needs the
system to have a damped natural frequency higher than 1.5, but allows system to be between 1.3 and 1.5
with degraded performance, and system fails completely when the natural frequency is 1.3 or lower. For
binary models of the system state, all performance degradations will be represented by step function.

Given the model of the degradation of components, the performance degradation definitions, and
a particular performance degradation aggregation scheme, the probability distribution for the system
impact over time can be obtained (see Figure 5). The volume above (t, t + ∆t) and (X,X + ∆X)
represents the probability that the system will be in a degraded state between (X,X+∆X) at time (t, t+
∆t). By comparing the catastrophic failure distribution for different aggregation schemes (Figure 6), the
designer can determine if differences in the aggregation scheme are significant for managing a particular
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Figure 3: Spring and Damper Degradation over Time.
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Figure 4: Amplitude, Maximum Frequency, and Damped Natural Frequency Specification

system reliability. The designer should also consider the difference between aggregation schemes and the
accuracy of the component degradation model used. The figure contains important information necessary
to make good design decisions. Taking a slice at a particular time gives the probability density function
for Xsys at that time. If the design has an intended lifetime, the designer can obtain an expected system
performance by obtaining the slice at the desired lifetime. Also, the cumulative distribution for complete
system failure can be obtained by taking slice at Xsys = 1.
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Figure 5: Probability Distribution Function for System Impact over Time.

There is an additional representation for same data that may be useful. By accumulating the proba-
bility distribution into P (X(t) >= X), the probability that the system will be at state worse than impact
of X at time t can be found (see Figure 7). By examining this plot, the designer can determine how
important the consideration of partial working states are. In this example, because there is a significant
probability that the system is in a marginally working state, the designer will be missing information if
she only considers the probability for complete failures to assess the reliability of the system.

Because the cumulative distribution, P (X(t) >= X), is monotonically decreasing with respect to
X , the designer can compute a reliability requirement surface, shown in Figure 8, that represents the
upper bound on the probability that system impact must satisfy. Rationally, this requirement surface
Sreq(X, t) should have the following general properties:

1. S(0, t) = 1

2. monotonically decreasing with respect to X

3. monotonically increasing with respect to t

The first property is simply a boundary condition stating that the system impact is always greater than or
equal to 0. The monotonicity with respect to X comes from fact that P (X(t) >= X) is a decreasing
function of X and the monotonicity in time comes from fact that the cumulative probability for failure
increases over time for non-repairable systems.
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Figure 6: Comparison of Performance Degradation Aggregation Scheme
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Figure 7: Cumulative System Impact Distribution

By comparing two surfaces (see Figure 9), the likely time when the system first exceeds the reliability
requirement can be determined. For this example, the reliability requirement is first broken at time =
1.5 along Xsys = 0. If the designer only considers catastrophic failure, then the system meets the
requirement until time = 7. Thus, the traditional binary failure state analysis focuses only on X = 1,
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but Figure 9 shows that some of the partial failure states are important to consider as well.
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Figure 8: System Impact Requirement

By analyzing which degradation component (or mode) is causing early system failures, and the de-
signer’s criteria on acceptable reliability, the design could be improved accordingly. Subsequent research
will explore the application of sensitivity analysis to this method, to allow the designer to determine cost
efficient improvements. This method also provides a way to create time-dependent continuous reliability
constraints that can be used for design optimization.

Reliability Based Design Optimization (RBDO) [13, 14] optimizes design objectives while satisfying
probabilistic reliability constraints. The traditional RBDO lacks time domain considerations and uses a
crisp failure boundary. The approach presented here illustrates a way for RBDO to use time-dependent
fuzzy failure constraints that also constrains the probability for partial failures. Thus, the designer could
optimize desired performances while satisfying new reliability constraints to obtain an highly reliable
design. In addition, if the designer has various reliability requirement surfaces for different degree of
reliabilities of the design, then the designer can trade-off reliability with other design attributes. Thus,
the data for system impact could be used in different ways to help the designer make rational trade-offs
between reliability and other attributes.

CONCLUSIONS
The new method presented here provides a way to predict the (continuous) state of a system based on data
on the performance and degradation of components. This approach also provides a straight-forward way
to compare the predicted performance and degradation of a system with a time-dependent performance
requirement. The results provide more information on the probability of the state of a system than binary
methods because the degradation of components and systems are represented on a continuous grayscale,
and also because the degradation of the system performance is computed from the degradation of the
individual components.
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Figure 9: Comparison of System Impact with Requirement
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