
INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED’07
28 - 31 AUGUST 2007, CITE DES SCIENCES ET DE L'INDUSTRIE, PARIS, FRANCE

IMPROVING DESIGN REUSE USING CONTEXT
Sanghee Kim1, Rob H. Bracewell1, Ken M. Wallace1

1 Engineering Design Centre, Department of Engineering, University of Cambridge, U.K

ABSTRACT
This paper presents an approach of exploiting contexts that are available within design environments
in order to improve the understanding of the information needs of a designer. The idea is that such
contexts allow reuse tools to acquire information relevant to a designer’s current task and this will
increase the relevance of retrieved information. A focus is given on the dynamic features of a design
process that often mean that a reuse attempt is opportunistic and task-dependent. Current reuse tools
have not addressed what types of task models are available and how such models can be used for
retrieving existing information. This paper argues that a key element to successful reuse is to interpret
the task model as the information seeking behaviours of the designer. To do this, it is necessary to
embed the reuse process into design environments in order to closely observe a designer’s information
seeking processes. The main objective is to reduce the cognitive burden on designers when searching
and retrieving reusable information. To demonstrate this idea, a software prototype has been
developed and integrated into a design rationale capture tool. Test results indicate that dynamic task
models successfully suggest information that not only the designers have not yet anticipated but also
that is essential for carrying out their current tasks.

Keywords: design reuse in context, dynamic task model, active retrieval

1 INTRODUCTION
Design reuse aims to maximise the information obtained from previous design activities in order to
improve future designs. It involves recognising the need for new information for current designs and
retrieving it from design repositories. Given the competitive pressures in business environments, the
reuse of previous designs has significant value for shorter delivery times and lower production costs.
For example, research has identified that up to 90% of all design activities are based on the variants of
existing designs [1]. As such, design reuse can make an important contribution towards improving
design efficiency.

Design reuse depends on the results of retrieving the required information. Approximately 90% of
organisational memory exists in the form of text-based documents. There has been an increasing
interest in retrieving design information from such documents. A keyword-based search is commonly
used and whereas it exhibits certain success in facilitating information retrieval, there are two
significant limitations when finding the information for reuse: (1) at least 60% of the information that
is critical to a designer’s task is not accessible [2]; and (2) due to a limited support in recognising the
existence of the reusable information, designers often make no attempt at reuse [3, 4].

To address those problems, current approaches have focused on building repository systems that
consist of reusable design information. One example is an expert system, which attempts to emulate
the problem-solving ability of a domain expert by generating automatic solutions for a specific task.
Expert systems have been widely deployed and have led to some significant improvements in
knowledge sharing among employees. However, experience of using expert systems highlights the fact
that organizational knowledge does not remain static, so a dynamic knowledge acquisition process is
needed [5]. Adding new knowledge to existing knowledge bases requires a high level of expert human
intervention. It is one of the reasons why the needed information is not always located. In particular,
the approaches have not addressed what triggers the designer at the first place to recognise the need of
reuse and subsequently initiate a reuse process by formulating searching queries. This means that

ICED’07/501 1

reuse is often ad-hoc and the designers view the time and effort needed to locate the information and
investigate its usefulness as too costly, often resulting in little or no attempt at reuse.

This paper presents an approach for exploiting the contexts available within design environments to
gain a better understanding a designer’s information needs. The idea is that such contexts are useful to
increase the relevance of retrieved information since they provide more precise descriptions of when,
how and why a designer perceives a need. It argues that a task model is crucial to identify such reuse
intention, and the key to capturing the task is to observe a designer’s information seeking behaviour.
In this paper, a designer’s current task is represented as the sequences of information seeking steps
often showing procedure dependencies. To demonstrate this idea, a software prototype has been
developed and integrated into a design rationale capture tool. The main objective of this research is to
understand how the information captured in previous projects can be made more accessible and usable
for future designs. In particular, the investigation and experimentation with a dynamic task model are
a primary feature that distinguishes the proposed approach from other research.

2 RELATED WORKS
Previous researchers have investigated the importance of reusing information in practice. Khadilkar
and Larry [6] estimated that up to 70% of past design information was requested by designers during
redesign. Burge and Brown [7] researched the benefits of reusing design rationales for a large-scale
software maintenance task and, through a controlled experiment, they observed that the designers
could finish their design tasks in a shorter time. Karsenty also showed the importance of reusing
rationales, i.e. over 50% of designer’s information needs are related to the questions that could be
answered by reusing the rationales [8]. Busby interviewed a total of 50 designers and managers
working for two engineering companies in order to identify the causes of reuse failures [9]. A total of
171 failure cases were collected, each of which was analysed according to contributing factors, e.g.
organisational reasons. The analysis indicated that the problems were complex and, particularly, the
failures could be explained by multiple causes of different types. He suggested that the provision of an
easier access to past design information would be helpful. This finding is in line with a new focus
within software reuse research that pays more attention to ensuring intelligent storage and retrieval
strategies, rather than focusing on developing reusable software components [4].

Focusing on sharing programming codes, e.g. Java API, there are a few well-established development
methodologies, e.g. object-oriented design in software engineering. It is claimed that such
methodologies can significantly improve software development. In an attempt to investigate whether
such methodologies are useful for engineering design, Ruben [10] compared design processes between
engineering and software design. He suggested that in software engineering, once the design
requirements are satisfied and accepted, they are seldom questioned. On the other hand, engineering
design is a selection process involving continuous adjustment and evaluation of the requirements. As
such, reuse tools for engineering design need to deal with the dynamically evolving reuse intentions of
the designers.

An industry survey reveals that when asked how much of the information that is available to the
company is actually used, many organizations responded with a figure of only 20% [11]. This low
figure is possibly due to the difficulties associated with locating and retrieving reusable information.
Designers are often not motivated to reuse information and can feel overwhelmed by the increasing
quantity of information available in a repository. Frequently, the time taken to locate information and
the subsequent integration of that information with current new requirements will be perceived as too
costly and outweighing any potential benefits. This leads to the main cause of reuse failures, i.e.
designers making no attempt to reuse.

Current reuse tools share common shortcomings in addressing the reuse problems above in that: (1)
they view a reuse as a standalone process and designers are willing to initiate the reuse process; (2)
they assume that the search queries entered by the designers are sufficient for identifying their
information needs; and (3) they do not consider that the designer’s information seeking behaviour
depends on task-dependent procedures. The proposed approach suggests embedding the reuse process
into design environments as a better solution to address those problems. Focusing on either Java

ICED’07/501 2

programming codes or Critics in kitchen designs, CodeBroker, RASCAL, and Critics are most
relevant systems to this research [3, 4, 12]. The proposed approach differs from those systems in that it
pays special attention to the dynamic nature of the design process, interpreting a designer’s current
information needs within his or her observed sequence of information seeking behaviours.

3 DESCRIPTION OF THE METHOD
The key element to successful reuse is to understand a designer’s reuse intention. The reuse intention
is the specification of information needs and is currently normally entered by a designer using a few
keywords. It is the first step in a reuse process and unless the designer consciously makes a reuse
decision, the process cannot happen. A problem is that the keywords do not provide adequate clues to
extract the needed information as represented and stored in reuse repositories. Current approaches to
this mismatch problem have focused on supporting advanced query processing, such as partial
matching or concept-based indexing. Whereas these approaches can be helpful when the designer
makes explicit reuse attempts by submitting such queries, these have limited support when the
designer is either not aware of the existence of the information or unwilling to disrupt the design
process to search for the information. In fact, this is one of the main reasons for reuse failures and
needs particular attention.

An improvement can be made in two directions: (1) actively delivering the information that a designer
will need for subsequent tasks so that he or she is aware of available information; and (2) embedding a
reuse process within design environments eliminating the need to disrupt the design process to start a
reuse query. A core step for such an improvement is to identify what tasks the designer is currently
working on and to search for task models that demonstrate similar information seeking behaviour. The
reuse tools then use the identified tasks to recommend the next likely information that the designer
will need. For example, when faced with an unexpected problem, designers first assess whether or not
the problem is serious and requires diagnosis. The designer’s intention of reuse is to find reasons or
causes that impact on the problem. Once the causes are identified, then it is likely that proven
solutions are the next information the designer will need. That is, the information needs can be
inferred by knowing what current task the designer is working on since the designer relies on the
information to get his or her task done. There are two approaches for identifying the current task of the
designer: (1) ask the designer to explicitly define his or her task; and (2) observe his or her design
activities.

The first approach assumes that the task model is static and can be inferred approximately from search
keywords. Often the model is extended to include the definition of an organisational role, e.g. a
service designer, or the responsibilities of the role, e.g. planning product maintenance. In contrast, this
research interprets the task model within a dynamic nature of the design process. The second approach
is to use a plan recognition, i.e. a process of inferring plans from observations [13, 14]. It involves a
mapping from a temporal sequence of actions and their effects to an organization of these actions and
their effects into some plan representation that identifies the goal of the plan together with the relation
between the components of the plan. It has been used for interactive systems such as natural language
dialogues where humans interact with computer systems in natural language. In order for computers to
understand what goals the humans have, the shared understanding of the humans’ tasks is important.
Representing users’ tasks into a goal-oriented procedure of actions is therefore necessary. In this paper
the second approach is adopted and the task model is acquired by observing a designer’s design
activities.

The proposed approach actively recommends the information that a designer might need to be aware
of when carrying out a given design task. The development of the approach consists of two steps: (1)
identification of a repository of reusable task models; and (2) construction of the recommendation
strategies.

3.1 Task models in DRed
Design Environments are computer-supported programs used by designers exploring problems and
finding solutions. As an example, the Design Rationale editor (DRed) is used in this paper. DRed is a
software tool that was designed to supplant the traditional designer’s notebook as a way of capturing

ICED’07/501 3

design decisions and their justifications at the time that they are made [15]. The elements are chosen
from a predefined menu of types, at the core of which are Issue (I), Answer (A), Pro Argument (PA)
and Con argument (CA), as proposed in the long established IBIS method for capturing deliberation
[16]. The design rationales captured by DRed are represented as a directed graph where the four
elements are linked with one another. The element is further elaborated using status information, e.g.
accepted, open, insoluble or rejected for the Issue. Each element is associated with a label that is a
textual description. Figure 1 shows the links available in DRed. A DRed path is the list of the links
starting from a specific element and finishing at a specific element. For example, a DRed path of I →
A →PA can be understood as a supporting argument, i.e. able to contain the windage from the gears,
is raised for the suggested design option, i.e. make shrouds closer fitting/fewer gaps, to the issue
created, i.e. how to change shrouding on gear. In the context of a design process, the designer has
used the DRed path for exploring solutions for a given design task. Such a DRed path is a task model
in DRed and the proposed approach recommends the next likely element that the designer will employ.

Answer

Issue

Pro Argument

has sub_issue

Con Argument

has pro argument has con argument

has sub_answer

has a decision or option

has a new issue

Issue

a pro argument is raised for a con argument is raised for

has sub-pro argument has sub-con argument

Figure 1. An overview of different link types among the DRed elements

3.2 Recommendation strategies
The proposed approach recommends the element, , using the two strategies: (1) a DRed path
similarity; and (2) a content similarity. The first strategy assumes that the DRed paths show how the
elements employed in specific sequences are useful for predicting the future elements to be used. That
is, the approach examines the sequence in which a current designer has invoked particular elements
and uses this as a basis of calculating the prediction for a new element. The following example
provides details.

kE

Let us assume that a designer has just created the element, which has a label of , and the
approach predicts the next element to be . To do this, an examination of previously captured links
(see details in Section 3.1) is carried out and the links of the elements matched with , are assumed
as highly relevant. If retrieved links commonly have as the next element of , then, based on the
assumption above, it is likely that the current designer would employ the element next. In doing so,
the DRed path similarity between the path of the current designer (

lE lL
kE

lE
kE lE

kE
ip) and each of the stored DRed

paths (jpn

j 1=
) is calculated as:

ICED’07/501 4

()
i

i

i

ij

ji

p
index

p
LP

ppsim *, = (1)

Where, measures of correlation between the path of the current designer and one of the
stored DRed paths, is the starting position of the correlation, and

(ji ppsim ,)
iindex ijLP is the longest path

shared between ip and jp . Then, the recommended score for is computed as: kE

())(*,)(
1

kfppsimEv
n

j
jik ∑

=

= (2)

Where, is the score of the element of to be predicted for a current designer, n is the set of
DRed paths stored in the repository, and is a Boolean indicating whether or not element is
invoked directly after the in the path

)(kEv kE
)(kf kE

iindex jp . Equation (1) and (2) are the modifications of the
methods proposed in [4] to be used for this approach.

The second strategy compares a content similarity between the label, , and all the labels, , stored
in the DRed repository. In doing so, each captured DRed document is analysed using shallow Natural
Language Processing (NLP) techniques. NLP techniques are known to improve the efficiency of
document indexing and searches compared to string-based indexing. The techniques include: (1) term
identification; (2) Part-of-Speech (POS) tagging; and (3) term normalization. Terms are identified as
words lying between two spaces including a full stop. The Apple Pie Parser [17] is used for the POS
tagging. POS identifies not what a word is, but how it is used. It is useful to extract the meanings of
words since the same word can be used as a verb or a noun in a single sentence or in different
sentences. In a traditional grammar, POS classifies a word into eight categories: verb, noun, adjective,
adverb, conjunctive, pronoun, preposition and interjection. Each POS-tagged word is compared with
WordNet definitions [18] to achieve term normalisation, e.g. shrouding is converted into shroud. This
is to reduce the problem of syntactic variations in grouping similar terms together. Each parsed
sentences are then indexed using the Term Frequency Inverse Document Frequency (TFIDF)
weighting method [19]. TFIDF assigns numeric weightings to index terms considering the quality of
the terms in relation to effective identifiers in the sentences. This allows to distinguish the few
sentences in which they occur from the many in which they are absent. The content similarity between
the label of the currently invoked element, , and one of the labels in is computed using the
Cosine Similarity [19], denoted as .

lL q

mL 1=

lL q

mL 1=

)(, ml LLc

The final recommendation score for the element, , is the summarization of the two strategies: kE

)(*)(*)(, ml LLcEvEr kk βα += (3)

 Where, α)10(≤≤ α and)1(αβ −= are used to normalize the score to lie between 0 and 1.

3.3. A software prototype
To demonstrate the proposed approach, a software prototype was developed. The prototype aims to:
(1) help designers better exploit reuse opportunities by actively recommending useful information
which is not known to them and yet might be relevant to their tasks; and (2) reduce the interaction
complexity when accessing reuse repositories by eliminating the need for explicitly making reuse
queries and for switching contexts between design environments and repositories. It consists of three
interfaces: (1) User Profile; (2) Search; and (3) Presentation. Figure 2 shows the architecture. When a
designer is capturing and structuring rationales using the DRed, the approach monitors the elements
being created and uses this monitored information to recommend the rationales that are deemed useful.
When monitoring the designer, only the usage history of current rationales is captured and other
rationales that this designer may have previously created are not considered. The User Profile interface

ICED’07/501 5

represents a current task model as the order of the elements being currently invoked. The prototype
starts a background process for capturing and updating the task model continuously without
interrupting the designer. Whenever the designer creates a new element and attaches a label to it, the
Profile interface sends a query to the Search interface with three parts: (1) the current element; (2) the
label of it; and (3) the order of the elements being created. Using the example above, the element
being worked on is PA, the label is able to contain the windage from the gears, and the DRed path is I
→ A→PA. The Search interface looks up the existing task models and predicts an element that is
likely to be the next element to be used after the PA. For example, the prediction might be the issue
related to the PA, e.g., how much windage can be reduced by putting the shrouds closer. In order to
make such a prediction, it is necessary to construct rules that specify the DRed path from the elements
invoked, which represent the condition part of the rule, to the predicted element, which represents the
result part of the rule. Thus, when the current DRed path matches the conditions, the Search interface
assumes that the designer is performing the corresponding task and the element in the result part is
predicted. The prediction uses the recommendation strategies in Section 3.2. The Presentation
interface presents the retrieved elements to the designer by ranking them in decreasing order of
relevance to the task model. The prototype was developed using the Perl programming language.

DRed Document
Repository

User Profile
Interface Search Interface

Presentation
interface

how to get to the station
in D:/DRed/examples/training
last mod 18:32 Tue 10 Feb 2004

How to get to
the rail station

Get a taxi to the
station

Expensive
Is likely to arrive
in time if ordered
now

Refill with fuel
from the can

Catch a bus to
the station

There is no direct bus
to the station. The journey
would be too long The can is

empty too

Take the can to
the petrol station

It would take too
long to walk to &
from the station

Use the car

Cheapest
It won't start

Quickest

 1=>
 car not starting:
 I:why

How to
make it start

There is no petrol
in the tank

 3=>
 car not starting:
 A:no petrol How to fill

the can

monitor query

search

- a currently focused element
- the label for the focused element
- the DRed path

retrievepresent
search results

monitor

Figure 2. An overview of the prototype.

4 TESTING THE METHODS

4.1 Dataset
This testing uses DRed documents collected from two case studies: (1) one dataset was obtained from
a large engineering company, and (2) another dataset was obtained from a project that created DRed
documents by reverse engineering documents from the Silent Aircraft Initiative (SAI) research project.
An empirical study using the two datasets was carried out in order to identify the usage of elements
and link types. Each document was analysed using the prototype in Section 3.3.

The first dataset, referred as COM, contains 67 documents and the second dataset, referred as SAI,
contains 178 documents. These two datasets show different distributions of the elements. In the COM
dataset, the distribution of each element is: Issue = 21%, Answer = 30%, Con argument = 22% and Pro
argument = 17%. In the SAI dataset, the distribution of each element type is: Issue = 27%, Answer =
51%, Con argument = 8% and Pro argument = 11%. The distribution of Pro and Con arguments in the
COM dataset, i.e. 39%, is approximately two times larger than that in the SAI dataset, i.e. 19%. The
distribution of Answer elements with open element status in the COM dataset is 51% whereas it is
94% in the SAI dataset. Both findings confirm that the two datasets are different in terms of their
contained DRed document contents. The main design problems in the SAI dataset were to investigate
various development options for designing a silent aircraft and the exploration of how current design
practices could be modified and improved was frequently discussed. The SAI project has currently
addressed design issues at the conceptual design stage. It might be difficult to select any design
options without considering supporting arguments resulting in the small number of Answer element
with accepted element status in the dataset.

ICED’07/501 6

Each DRed document has at least one root element. The root element is the topmost node in a graph at
which the rationale capture process begins. Using the links shown in Figure 1, designers can explore
different design tasks, e.g. understanding problems or generating solutions. A complete DRed
document is viewed as a conceptual model of the design process starting at the root element and
finishing at the bottom elements. A total number of DRed paths is 921 for the COM and 352 for the
SAI. There exist 278 different types of DRed paths for the COM and 62 for the SAI. Table 1 shows
the top five most commonly occurring DRed paths, each of which was associated with the number of
occurrences. A single engineer created the DRed documents in the SAI dataset, whereas multiple
designers contributed to the 67 documents in the COM. It is one of the reasons why there exist a larger
variety of path types in the COM.

Table 1. Top 5 DRed paths in COM and SAI dataset

COM Num SAI Num
Issue(open) → Answer(open) → Con

argument(holds)
32 Issue(open)→Answer(open)→

Issue(open)→ Answer(open)
83

Issue(open) → Answer(open) → Pro
argument(holds)

29 Issue(open) → Answer(open)→
Pro argument(holds)

56

Issue(resolved) → Issue(resolved) →
Answer(accepted)

16 Issue(open) → Answer(open) 30

Issue(open) → Answer(rejected) →
Con argument(holds)

15 Issue(open)→ Issue(open)→
Con Argument(holds)

27

Issue(resolved) → Issue(resolved) →
Answer(accepted) → Pro

argument(holds)

15 Answer(open) → Issue(open) →
Answer(open)

15

4.2 Example queries
The prototype uses the recommendation strategies described in Section 3.2. The value for α in
Equation (3) was set as 0.6. Two cases of design reuse, i.e. one for each dataset, were prepared. The
first case assumes that a designer explores various solutions on the design issue of reducing heat to oil.
Once he or she identifies that change shrouding is one of the options, the designer is looking for
design processes that realize the option, and identifies make shrouds closer fitting/fewer gaps as one of
the options. The left figure in Figure 3 shows the DRed document describing this case and the right
figure shows the recommendations presented by the Presentation interface. The corresponding DRed
path for the designer’s current task is Issue(open) → Answer(open) → Issue(open) → Answer(open).
As soon as the label to the currently invoked element, i.e. Answer(open) is complete and the designer
highlights the element by a mouse-click, the following three pieces of information are sent to the
Search interface: (1) Answer(open); (2) make shrouds closer fitting/fewer gaps; and (3) Issue(open) →
Answer(open) → Issue(open) → Answer(open). The Search interface uses (2) as a query to retrieve the
rationales whose labels have similar contents, and (1) and (3) as contexts to rank the retrieved
rationales according to their relevance to the designer’s current task model. Using the Equation (2), the
top three elements that have the highest values are Issue(open), Con Argument(holds) and Pro
Argument(holds). These are the elements that the designer will most likely use next. For example, the
designer might add a negative argument to the current design option, i.e. would require more
shrouding – increases parts count and weight, or consider the issue of whether the improved gear
shrouding reduces heat to oil problem. The top ten elements are selected and shown along with the
names of DRed documents where each element is extracted. The Presentation Interface allows the
retrieved elements to be presented in various ways, e.g. rank the elements as decreasing order of the
values in the Equation (3) or as the values in the Equation (2). The right figure in Figure 3 presents the
retrieved elements as decreasing values in the Equation (2). Since some of information is regarded as
sensitive to the organisation, the texts inside the figure were intentionally made less readable.

ICED’07/501 7

Figure 3. Recommendation results for the first case

The second case assumes that a designer has added a design option of modify engine to reduce noise to
the issue of how can the engine be improved. The corresponding DRed path is Issue(open) →
Answer(open). The three pieces of information sent to the Search interface are: (1) Answer(open); (2)
modify engine to reduce noise; and (3) Issue(open) → Answer(open). Using the Equation (2), the top
three elements are Issue(open), Pro Argument(holds), and Con Argument(holds). The left figure in
Figure 4 shows the information suggested using the proposed approach. The right figure shows the
information retrieved based on only considering content similarities. That is, in the Equation (3), the
value of the DRed path similarity computed by using the Equation (2) was ignored. The first
recommended element using the proposed approach is the issue of what are the sources of engine
noise? This issue is highly useful for the designer since before exploring various solutions to the
design option, he or she might want to understand the options better. For example, the information
about the sources of engine noise is a good starting point to explore the design process of modifying
the engine for noise reduction. That is, the proposed approach is able to make recommendations in the
right context thus helping the designer reuse existing information more effectively. On the other hand,
the recommendations in the right figure are the simple look-up results of the rationales whose labels
have similar content meaning, so some of them might be irrelevant. Designers then have to spend
considerable time examining which presented rationales are most likely to contain their information
needs. Using the current task of the designer as a context, the proposed approach demonstrates a more
efficient way of retrieving and presenting information.

ICED’07/501 8

Figure 4. Recommendation results for the second case

5. CONCLUSIONS AND FUTURE WORK
Current reuse support tools have not efficiently addressed the problem of reuse failures caused by
either a designer not being aware of the existence of reusable information or a designer perceiving a
reuse process as too costly, thus making no attempt at reuse. A major disadvantage of current tools is
that they depend on designers initiating the reuse process. Unless the designer makes an explicit effort
at reuse by submitting search queries, design reuse does not happen. Many designers are unwilling to
disrupt the design process to search for information. Embedding the reuse process into design
environments eliminates such dependency and could improve design reuse significantly. It would also
help to exploit task-related contexts for more accurately identifying the information needs and increase
the relevance of the retrieved information. The proposed approach has demonstrated the benefits of
using a designer’s current task model as an example of context for recommending information that the
designer has not anticipated and that is essential for implementing the current task. A preliminary test
with two reuse queries has shown the potential of the proposed approach.

The proposed approach has currently focused on the design rationales captured by DRed, but it can be
easily extended to include other types of resources, e.g. CAD drawing databases. One of the reasons is
that the approach has constructed reusable task models with a minimum support from human experts
who help identify which tasks are reusable. The user profile can be improved by reflecting the
feedback from a designer. Currently, the designer is not allowed to explicitly open his or her profile to
customise the content according to his or her preferences. The preferences can be used for determining
how many details of retrieved information should be shown since a concise and short information
might be preferred by one designer but another would prefer more details.

ACKNOWLEDGEMENTS
This work was funded by the University Technology Partnership for Design, which is a collaboration
between Rolls-Royce, BAE SYSTEMS and the Universities of Cambridge, Sheffield and
Southampton.

REFERENCES
[1] Fletcher D. and Gu P. Adaptable Design for Design Reuse. In Second CDEN International

Conference on Design Education, Innovation, and Practice, Canada, 2005.
[2] 80-20 software. 80-20 Retriever Enterprise Edition. http://www.80-20.com/brochures/Personal

Email Search Solution.pdf, 2003.
[3] Ye Y. An Active and Adaptive Reuse Repository System. In the 34th Annual Hawaii

International Conference on System Sciences (HICSS-34), Vol. 9, Hawaii, 2001.

ICED’07/501 9

http://www.80-20.com/brochures/Personal Email Search Solution.pdf
http://www.80-20.com/brochures/Personal Email Search Solution.pdf

[4] McCarey F., Cineeide M. O. and Kushmerick N. Knowledge Reuse for Software Reuse, In
International Conference on Software Engineering and Knowledge Engineering, 2005.

[5] Otto K. and Abecker A. Corporate Memories for Knowledge Management in Industrial
Practice: Prospects and Challenges, In Information Technology for Knowledge Management, 8,
Springer, New York, 1998.

[6] Khadilkar D. and Larry S. An experimental evaluation of design information reuse during
conceptual design. Journal of Engineering Design, 1996, 7, 4, 331-339.

[7] Burge J. and Brown D. C. Rationale-based Support for Software Maintenance, Rationale
Management in Software Engineering, A. Dutoit, R. McCall, I. Mistrik, and B. Paech, 2006,
Springer

[8] Busby J.S. The Problem with Design Reuse: An Investigation into Outcomes and Antecedents.
Journal of Engineering Design, 10(2), 1999, 277-296.

[9] Karsenty L. An Empirical Evaluation of Design Rationale Documents. In SIGCHI conference
on Human Factors in Computing Systems, Canada, 1996, pp.150-156.

[10] Ruben P.D. Reuse as a New Paradigm for Software Development. In International Workshop
on Systematic Reuse, London, 1996.

[11] Gundry J. and Metes G. Team Knowledge Management: A Computer-Mediated Approach. A
White Paper from Knowledge Ability Ltd. Manchester NH USA 1996.

[12] Fisher C., Nakakoji K., Ostwald J., Stahl G. and Sumner T. Embedding Critics in Design
Environments. The Knowledge Engineering Review, 1993, 8(4). 537-561.

[13] Lesh N., Rich C., and Sidner C. L. Using Plan Recognition in Human-Computer Collaboration.
In Seventh International Conference on User Modelling, Canada, 1999.

[14] Ulrich H. and Schiele F. Towards Task Models for Embedded Information Retrieval. In
SIGCHI conference on Human Factors in Computing Systems, California, 1992, pp.173-180.

[15] Bracewell R. H. and Wallace K. M. A tool for capturing design rationale. In 14th Int. Conf. on
Engineering Design, Stockholm, 2003, pp.185-186.

[16] Kunz W. and Rittel H. W. J. Issues as Elements of Information Systems. Working Paper 131.
Center for Planning and Development Research, Berkeley, USA. Elsevier Scientific Publishing
Company, 55-169, 1970, Inc. Amsterdam.

[17] Sekine S. and Grishman R. A Corpus-Based Probabilistic Grammar with only two Non-
Terminals, In the Fourth Int. Workshop on Parsing Technologies, Czech Republic, 2001,
pp.216-223.

[18] Miller G.A. Beckwith R.W. Fellbaum C., Gross D. and Miller, K. Introduction to wordnet: An
on-line lexical database. International Journal of Lexicography, 1993, 3(4), 235-312.

[19] Salton G. Advanced Information-Retrieval Models. In Automatic Text Processing (Salton, G.
Ed.), chapter 10. 1989, Addison-Wesley Publishing Company.

Contact: Dr. Sanghee Kim
University of Cambridge
Engineering Department, Engineering Design Centre
Trumpinton street
Cambridge
U.K.
44-1223-760559
44-1223-332662
shk32@eng.cam.ac.uk

www-edc.eng.cam.ac.uk/people/shk32.html

ICED’07/501 10

mailto:shk32@eng.cam.ac.uk

	ABSTRACT
	1 INTRODUCTION
	2 RELATED WORKS
	3 DESCRIPTION OF THE METHOD
	3.1 Task models in DRed
	3.2 Recommendation strategies
	3.3. A software prototype

	4 TESTING THE METHODS
	4.1 Dataset
	4.2 Example queries

	5. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

