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ABSTRACT 
A lot of systems are assembled from near-independent mechatronic subsystems that have to be 
configured to match each other.  An example of such systems are e.g. home entertainment systems, 
where TV, DVD and Receiver are matched to form an overall system, and compilation of pumps and 
controllers to form fresh water supply systems. Sometimes an external knowledge system keeps track 
of how each subsystem has to be configured, but the actual configuration is often done manually.  
Installing and maintaining those kinds of systems can be a tedious task and often requires repetitive 
labour.  The idea is to “split-up” the product knowledge and encapsulate it into each subsystem.  Then, 
when the subsystems are assembled, the configuration of each subsystem can either be done 
automatically or with minimum input. The concept could be called: embedded configuration. 
 
This article will try to connect three aspects of making distributed knowledge system, the 
encapsulation of product knowledge, its subsequent encoding into product models, and finally, the 
communication of knowledge between the subsystems.  There are two main reasons for focusing on 
communication, namely the encapsulation of knowledge and the communication between machines. 
One has to identify the information needed from outside for each subsystem to work.  That 
information should also aid in finding the “services” that the subsystem can offer the overall system.  
Communication between subsystems has to be made explicit. A protocol has to be in place to tell the 
subsystem how to share its inner workings and how to be able to participate in the overall system.  

Keywords: Product Models, Knowledge Engineering, Configuration 

1 INTRODUCTION 

 “Systems everywhere” as so eloquently stated by Bertalanffy [1] is an excellent way to describe our 
modern society.  It surrounds us with systems to help us in and to make better our daily lives.  Many 
of those systems are “hidden” from us, and we only notice them when they fail.  Think about the 
facilities that one uses daily, like electricity, water, sewers and heating. Those are complex product 
systems that are made by combining several subsystems (or independent products) to form a whole.  
Many of the subsystems are equipped with computers.  By setting parameters those subsystems can be 
allowed a wide range of different setups, just like they were different products. To make the subsystem 
work in a context, these parameters need to be set.  An example of an installation complexity could be 
the water supply in a given building of reasonable size which would require about four to six pumps, 
each with 500 parameters being controlled by a controller (in the sense of a controlling unit, not a 
person) that has 3000 parameters to be set.  One can easily see the tediousness of installing such a 
system.   
 
In order to make complex product system setups easier an idea is brewing.  If one were to encapsulate 
as much product knowledge in each subsystem as needed, have internal configuration engines keep 
track of internal consistency and focus communication between subsystems so that only core 
information or knowledge is transferred, setups would be simplified.  The idea is to make the systems 
kind of aware and give them knowledge to “self-configure”, once the hardware connections are made.  
This idea has a lot in common with the field of artificial intelligence, specially the branch of 
distributed artificial intelligence and has inspiration been drawn from that field on how to go about 
solving it.  This article will try to connect three aspects of making distributed knowledge systems, 
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namely the encapsulation of product knowledge, its subsequent encoding into product models, and 
finally, the communication of knowledge between subsystems.  To achieve this, one has to look at the 
building blocks needed for such construction namely: knowledge, communication, how to 
communicate knowledge and finally, how to model in such a way that it will support the final 
implementation.  The solution suggested for making distributed knowledge systems work, is called 
embedded configuration, and there will be a discussion on this principle later in the article.  This 
article will end with a rationale for why the communication issue should be the focus of such an 
approach.  Let us now go through the building blocks one by one, connect them into a whole and then 
tie them to the concept of embedded configuration. 

2 KNOWLEDGE AND ITS PART IN COMPLEX SYSTEMS SETUP 

Before moving into embedded configuration and communication, let us talk a little about knowledge.  
How is it viewed and defined, or what is maybe more relevant, how it fits together with the task of 
creating complex systems?  Every undertaking humans do is built on our knowledge of things and 
surroundings.  We are often not very aware of our knowledge and how it is structured, we just use it.  
If one is to construct an intelligent system, one has to know what knowledge is, and especially how to 
transfer or communicate it to the machines.  Let us start with knowledge and its relationship with data 
and information. 

Attempting a knowledge definition 

Knowledge has been a research topic for some time now.  What is interesting is that authors have 
different aspects to their understanding of knowledge and its dependency on data and information.  
Note that these views are not contradictory, they just represent different viewpoints and seem 
dependant on the domain from which the author focus his / her research.  A quick, and by no means a 
complete, look at the dependency between data, information and knowledge is shown in Table 1. 

Table 1 – Different authors on data, information and knowledge 

Author Data Information Knowledge 
Moore Digital object 

Objects are streams 
of bits 

Any tagged data, which is 
treated as an attribute 

Attributes may be tagged data 
within the digital object, or 

tagged data that is associated 
with the digital object 

Relationships between attributes 
Relationships can be procedural / 

temporal, structural/spatial, 
logical/semantic, functional 

Wiig   Facts organised to describe a 
situation or condition 

Truths and beliefs, perspectives 
and concepts, judgements and 

expectations, methodologies and 
know-how 

Nonaka and 
Takeuchi  

 A flow of meaningful 
messages 

Commitments and beliefs created 
from these messages 

Spek and 
Spijkervet  

Not yet interpreted 
symbols 

Data with meaning The ability to assign meaning 

Davenport  Simple observations Data with relevance and 
purpose 

Valuable information from the 
human mind 

Davenport 
and Prusak  

A set of discrete 
facts 

A message meant to change 
the receiver’s perception 

Experiences, values, insights, and 
contextual information 

Quigley and 
Debons  

Text that does not 
answer questions to 
a particular problem 

Text that answers the 
questions who, when, what, or 

where 

Text that answers the questions 
why and how 

Choo et al.  Facts and messages Data vested with meaning Justified, true beliefs 

Jensen 
Group 

Representation of 
facts 

Data plus Meaning 
Understanding of  patterns, 

relationships 

Information plus Beliefs, 
Commitments, Assumptions, 

Design for application 

Constructed from Stenmark [2], R. Moore lectures at Rice University, Houston, Texas and Jensen 
Group [3] (who compiled from Fahey, Nonaka, Wurman and Gange) 

 
Some interesting aspects are notable in Table 1.  Although most agree on data as facts or symbols and 
information as data with meaning, the authors reach different abstraction levels in their knowledge 
definitions.  The IT view offered by Moore has knowledge with “lower” abstraction than e.g. Choo’s 
“justified true beliefs”.  The views that would make most sense in this article are the ones presented by 
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the authors Quigley and Debons fused with Nonaka and Takeuchi. The views stated in Table 1 are 
quite well summarized in Mueller & Schappert [4] as a set of abstraction levels and general 
description to each  level.  It points to linkage as the most important aspect, not the definition of each 
level.   

Table 2 - General view on data, information and knowledge [4] 

In the classical interpretation That is: 
Data is associated with syntax Data per se has no meaning and may be seen as raw material for 

information 

Information corresponds to semantic  Information is context sensitive and meaningful in the sense that it is 
interpreted data 

Knowledge takes the pragmatic part Since context is user (application) dependant, information then may be 
enhanced by its use, i.e. the pragmatic knowledge 

 
This is to say that how one moves between the levels is more relevant than giving a precise definition 
of those same levels.  A definition of 
each level is shown in Table 2.  Taking 
this view on the linking and picturing 
would result in Figure 1. 
 
So, where is this leading? No matter what 
views on data, information and 
knowledge is taken of those presented in 
Table 1, by focusing on how to move 
between levels and identifying what is essential, it should be possible to use that to make more 
intelligent systems. The syntactic and semantic is linked with 
context mapping while the semantic and pragmatic has action 
interpretation link. That can be even more useful if we call it 
context and interpretation as pictured in Figure 2. 

 
The process of moving from data to knowledge[5], as indicated in 
Figure 2, should hold true for all viewpoints stated in Table 1.  But, 
for the purpose of structuring data, information and knowledge in 
regard to embedded configuration, we will focus on context and 
interpretation and use the definition in Table 2 as our guide.  This 
actually coincides with the point of view offered by Schreiber et al 
[6],who state that maybe a precise definition of knowledge is not 
needed to be able to manage knowledge and its communication. 
 
This focus should also imply how communication can be handled.  
Let us move on to communication and its role in knowledge 
sharing.    

3 COMMUNICATION 

Communicating knowledge can draw inspiration from many different fields.  Human beings do it all 
the time, and much research on this topic has been carried out.  Computer science has tried to emulate 
humans in artificial intelligence, especially distributed AI and the design of complex control systems 
has focused on communication for quite 
some time.  When we communicate in our 
daily lives, we usually do not differentiate 
between data and information on the 
producer side or information and 
knowledge on the consumer side.  Matthias 
Rauterberg [7] shows this well in his 
producer to consumer view of 
communications as seen in Figure 3.  So, 
what gets communicated is information or 

Knowledge

Data Information

(pragmatic)

(semantic)(syntactic)

Knowledge

Information

Data

Action interpreted

Context interpreted

The semiotic triangle Knowledge evolution

 

Figure 1 - Relating data, information and knowledge [4]  
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Figure 2 - Moving between 
data, information and 

knowledge [5]  
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Figure 3 – Producer / consumer communication [7] 
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context-rich data, and it is then subsequently the consumer who interprets the communiqué to 
knowledge. 
 
This producer / consumer terminology could be more easily understood by using communication 
theory [8], which states producer as sender and consumer as receivers (Figure 5). This is one of two 
other ways to look at communication, the other being communication layers (Figure 4).  Even though 
these look different they are of similar rationale. 
 
The lowest layer in Figure 4, the physical carrier, is the same as the medium part of Figure 5.  The 
protocol will decide how coding and decoding is done and subsequently how the signal will be like.   

Flow of control

Meaning

Protocol

Physical carrier

 

Figure 4 - The 
communication layers [9] 

 

Figure 5 - Communication theory [10] but based on Shannon & Weaver [8] 

 
The two higher layers, Meaning and Flow of control, are not explicitly drawn in Figure 5, but the first 
mentioned, Meaning, would implicitly be what the sender wanted to say to the receiver.  Flow of 
control is not present in the communication theory, but one could think of ways to add this to the 
picture.   
 
In anthropology yet another way to look at communication exists, the high and low context 
communication put forth by Hofstede [11].  This focuses on the awareness stage (in Figure 2) and on 
how much knowledge / context one has to add to the actual “signal” to get the “right” meaning from 
the communication.  Think about the following: ask anyone in most western cultures for directions to 
a place that does not exist, and everybody (well, most likely everybody, apart from some jokers) will 
tell you that the place is nowhere to be found.  Do the same in some middle-east countries where it is 
considered rude not to help, and some people might try to guide you to somewhere.   
 
To visualize this difference, one 
could draw a “context” axis and 
place the three levels there.  
Figure 6 and Figure 7 show high 
and low context communication 
by placing the three levels on an 
imaginary “context” axis where 
longer distances depict more 
context knowledge. In those 
figures the x-axis has no special 
meaning. 
 
The context of communication has another impact; it places a role on the sense-making process.  
Sense-making in communication has been researched in, among others, the sense-making theory [12].  
Its core is “asking the right questions” when communicating.  Think about the following:  you go to 
the library and ask for Shannons & Weavers article on communication.  The librarian gives you what 
you ask for, but you later realize that it was not exactly what you where looking for.  If, in the 
beginning, you could explain to the librarian why you were there, like:  I am working on how to 
communicate knowledge and need literature related to communication, the librarian would have had a 
chance to “interpret” or put into “context” what you wanted and find something relevant.  In relation 
to what has been said earlier, the first is communicating data and the latter is communicating 
information.  When communicating information the receiver gets the possibility to “interpret” or 
“contextualize” it to multiple sets of data.  This could be drawn onto the data, information and 
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Figure 6 - High context 
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knowledge mapping figures with an arrow running down from knowledge to data.  The lower the 
context barrier (like the bar in Figure 6 and Figure 7), the “easier” the mapping between data and 
information / knowledge ought to be.  Like this paragraph on communication hints, one would most 
likely not have knowledge in the communiqué, only information, and it would then be up to the 
receiver to make the interpretation.   

4 COMMUNICATING KNOWLEDGE 

We constantly try to communicate knowledge in our surroundings.  This might be best illustrated with 
an example.  The other day I helped my mother move photographs from a digital camera to a PC.  This 
should be a straightforward task.  The problem (well, one of them) was that we live in different 
countries, so I guided her through the telephone.  This took a lot longer than expected and required 
many iterations and explanations.  After we had finished the task, I came to think of how this actually 
related to my work and the communicating knowledge “dilemma”.  It made me ponder on the 
following:  Let us assume that you are a computer literate person with some IT knowledge and you 
were to communicate your knowledge to an elder semi-computer literate person who is to perform a 
simple (from your point of view) task.  Would you prefer to do this through the telephone in your own 
language, meaning that you could only use words and no observations nor manual guidance, or on site 
in an unknown language and having to rely on mime, observation and manual guidance? 
 
An interpretation of this scenario could be that in the first case, one would try to decode one’s 
knowledge into information and then ask the other person to do carry out a task / an action that he / 
she does not understand as he / she does not have the knowledge to do neither the interpretation nor 
the putting into context.  It would be a lot like playing blind-chess and having a semi-independent 
“machine” to move your pieces, because people do not always do precisely what one says or your 
prescriptions are not precise enough. One would then constantly have to check if the person had done 
what you asked him / her to do.  In the other case, one would not have to decode one’s knowledge or 
to explain both interpretations and context.  A simple “follow my lead” would suffice, even though 
one could not speak a word in the other person’s language.   
 
This talk on knowledge and communication is all good and well.  Let us now put it into context with 
the problem at hand, namely the use of embedded configuration to increase usability.   

5 EMBEDDED CONFIGURATION AS AN AID TO REDUCE COMPLEXITY 

A lot of systems are assembled from near-independent mechatronic subsystems that have to be 
configured to match each other.  An external knowledge system sometimes keeps track of how each 
subsystem has to be configured, but the actual configuration is often done manually.  Installing and 
maintaining those kinds of systems can be a tedious task and often requires repetitive labour.  The 
general idea is to “split-up” the product knowledge and then encapsulate it into each subsystem.  Then, 
when the subsystems are assembled, the configuration of each subsystem can either be done 
automatically or with minimum input. The concept could be called: embedded configuration. To better 
explain embedded configuration let us use system theory and very simple graphics to go through the 
underlying rationale.   

Explaining Embedded configuration 
The concept of embedded configuration and its benefits can be explained by the system theory, where 
elements, relations and boundaries are presented in a graphical way like for example in Skyttner [13], 
but built on von Bertalanffy’s ideas [1]. Let us think of a system (Figure 8), it has elements that have 
internal relations. Some of the elements require input from the environment (e.g. users) and therefore 
transcend the system boundary.  Here one assumes 
that the elements are some kind of parameters that 
have to be set.  Some are set with internal relations 
while other require input from outside the system.  
Note that the abstract figures of the system that 
follow do not state anything about what the system 
does; only that it needs inputs to be set to a working 
state. 

System boundary

User input

Element

Relation

 

Figure 8 - A simple system with elements and 
relations 
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For explanatory purposes, let us assume that the system is a multipurpose system and the user inputs 
needed are parameters to select some of the intended behaviours.  If many of such systems are 
combined to a larger system (Figure 9), an “installation” problem arises, where subsystems have to be 
“matched” or configured to the overall system-intended application.   The following rationale only 
deals with the problem of installing such systems, but not the subsequent use or purpose (could also be 
called system assembly).  It is about making a system that works, but not about what it is to do.  Back 
to Figure 9 and how the various user 
inputs are related:  Someone, like the 
user or an external information 
system, has to set all the user input 
parameters to make the system work.  
But the inputs are not independent; 
some of them can be related in one of 
two ways, they are to match the 
hardware together, i.e. one subsystem 
is connected to another and the 
parameters make each subsystem 
“aware” of each other.  The other way 
is related to the use of the final 
system, the application.  That is, when 
the overall application is decided, some of the inputs will connect together.  Both of these relations can 
easily be expressed with rules, constraints or mappings in an integrated system.  Things get trickier 
when the final system is constructed of unknown subsystems, i.e. when it is not predefined what 
subsystems are present in the final 
system.  The enclosing of the solution 
space or the matching of hardware is 
the first thing that relates some user 
inputs to others.  Graphically, this can 
be shown by connecting interrelated 
inputs, so when one input is set, some 
others will automatically also be set, 
as shown in Figure 10. The 
interrelating of these inputs is a 
parallel to constraining the solution 
space.  As these are completely 
hardware-related we will name them 
Hardware-induced configuration.   
 
The nature of these relations and that all needed information for connecting the subsystems lies within 
the overall system, makes one argue that this linking should be accomplished completely automatic-
ally.  The other kind of interrelation between inputs is the application related inputs.  These can be set 
when the overall usage of the system 
is determined.  Once the application 
is selected, some inputs will relate to 
each other and by answering or 
setting one input, several others may 
be determined.  Graphically, this can 
be shown just like the hardware 
setup, and this is done in Figure 11.     
 
Application relations rely on user 
inputs to be set so they are most 
likely not automated, but the 
relationships should be identified 
before the parameters are set.  This 
relates to the selection of a specific 
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Subsystem
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Subsystem
boundary

System boundary

 

Figure 9 - Subsystems combined to form a system 
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Figure 11 - Some relations are application related 
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solution and could be named Application-induced configuration.  What is maybe not stated explicitly 
here is that inside each subsystem part of configuration can take place and that it is completely 
“contained”, i.e. each subsystem will make sure that its internal workings are in order and no illegal 
settings are present.   
 
An example will illustrate this.  Think about your home and the television and DVD player that most 
of us have.  When installing the DVD player, one has to go through a menu to tell the player what kind 
of TV is present, i.e. normal or widescreen. This is in essence, hardware-induced configuration.  Once 
a DVD disk is placed in the player, one has to select an “application”, what one wants to do, for 
example, select subtitles or a language.  This is the selection of a specific solution or application-
induced configuration.  This example could of course be made much more complex, but it should 
highlight the two important aspects of embedded configuration, that is the hardware- and application-
induced configurations. 
 
Combining subsystems to form a system, where the subsystems have to be configured to work in the 
overall system, is a tedious task.  As seen in Figure 9 to Figure 11, it is possible to reduce the user 
inputs by relating inputs to each other.  This encapsulation of both hardware awareness and application 
hopefully require fewer inputs by the user.  By connecting complexity to the number of activities one 
could argue that complexity is reduced in such a concept and hence the usability for the user is 
increased.  This, of course, remains to be seen (and proved), but the working hypothesis is that this 
holds true. 
 
It is easy to put forth such concepts, but to show how to make them viable and construct them is 
another matter.  When constructing such a system, several issues have to be clear. One would want the 
setup to be tolerant towards new subsystem versions and be able to demonstrate redundancy by 
reconfiguring if some subsystems fail or partially stop functioning.  This requires that the product 
knowledge of each subsystem has to be stored internally in each subsystem and they then have to be 
able to communicate meaningfully to cope with the overall system.  The reasoning in this chapter also 
points towards why communication between modules should be the focal point of the concept.  To be 
able to inter-relate hardware and application settings between subsystems, one has to know what each 
subsystem requires in order to function, and how one could ensure that such knowledge sharing deals 
with the issues mentioned earlier. 

Industry example of where Embedded configuration is needed 
Appling the aforementioned rationale to the example mentioned in the introduction of the article 
should aid to clarify the suggested method.  When connecting a pump to a controller, some parameters 
have to be set to “tell” each device what it is to be connected to.  The pump has to know that it is being 
controlled externally, and it has to “relinquish” its own control.  The controller has to know the 
attributes of the pump, so that it can control the overall system accordingly.  These things are all 
hardware-related in the sense that they help define the solution space, i.e. what applications are 
possible for the whole system.  If the subsystems could communicate meaningfully, these tasks would 
“disappear” from the installation.  When selecting a specified application, some of the devices have to 
be told what is being done.  As a part of the application, redundancy has to be set. What is the pump to 
do if the connection to the controller is lost and vice versa, how shall the controller handle lost 
connection to the pumps?  This research is based on a case study at a major pump producing company, 
and while empirical work is still underway, preliminary results suggest that roughly one third of all the 
parameters (in all devices) have to do with hardware-induced configuration, half with application-
induced configuration or selection of a solution and subsequent operations, and finally the rest should 
probably not be parameters at all as they are never changed.   
 
The concept of embedded configuration has now been introduced, and we have identified that both 
knowledge and communication have to be modelled to make this work.  Let us next look at ways to 
achieve this. 
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6 MODELLING KNOWLEDGE TO SUPPORT COMMUNICATION 

Modelling is done to support all kinds of activities.  Since models are abstraction of the world their use 
is helpful in decomposing problems and structuring knowledge.  Designers of physical artefacts have 
for some time used models to aid in the design process.  Artefacts are made by humans to serve some 
purpose.  Herbert Simon put forth the boundaries for science of the artificial in his like-named book 
[15], where he states on page 5 that: “Artificial things can be 
characterized in terms of functions, goals and adaptation”.  These 
artefacts are often discussed when they are being designed, and the 
designer has to know the intended purpose and then synthesize a 
solution.  Many have tried to aid the designer by making the process 
more explicit and develop tools to that end.  When designing complex 
systems, like an industrial plant [14], another axis besides the one 
identified by Simon becomes apparent, the whole-part look on the 
system, where for each level one has to look at the means-ends axis.  
This is shown in Figure 12. 
 
The purpose or goal of each level is realized with structure or components that behave in a functional 
way towards a goal.  This requires functional thinking or reasoning in design and many researchers 
agree on that.  Like functional and physical dimensions [16], the mapping between functions, design 
and processes [17], functional models [18], technical system theory [19], capturing functional 
knowledge [20], the Function-Behaviour-State modelling [21] and last but by no account least, the 
functional structuring of Pahl and Beitz [22].  All these researchers have their way of trying to capture 
the purpose of the artefact being designed and their view should be helpful when we encode the 
purpose into the product model.  Once the purpose is known, mapping between the means-ends levels 
is required.  There are many ways to do this.  The product family master plan or PFMP (sometimes 
called product variant master or PVM) technique has been developed to illustrate variance in product 
families.  It has evolved from the Andreasen’s Chromosome model [23], and the PFMP latest variation 
[24] has three views, the customer view, engineering view and the part view.  The first relates to the 
goal from Figure 12, the second to functions and the third to components.  The PVM is also used in 
the procedure for making configuration systems [25]. Another method is the GTST (Goal-Tree-
Success-Tree) method suggested by Modarres [26], where the authors map structure and functions 
together.  Within the field of product configuration Mittal & Freyman [27] have suggested that 
knowledge structuring should be done on physical structure, functions and the mapping there between.  
Forza & Salvador [28] add the layer of performance on top of functions and components, which could 
also be called goals or applications.  In short, most agree that different abstraction levels are needed to 
fully describe a product and its purpose.  This is like “encoding” the knowledge and rationale that the 
designers went through when designing the product [29] into the product model.   
 
To map these connections visually may become quite a tedious task with many relations. Therefore, 
others researchers have suggested to use Design Structure Matrixes (DSM) [30] to help the designer to 
design with function-structure mappings [31].  Another problem constantly arises both in design and 
modelling; how does one accomplish functional decomposition?  Some good guidelines on product 
decomposition can be found from different authors, the four relationship types [32], the DSM view 
[33] but even more important is the attempt to include the purpose of products in decomposition 
strategy [34], where the authors map requirements to functions.  A sharp definition of the functional 
language is required (e.g. Lind’s Multilevel flow models [9], Stone’s Functional basis [35] or 
Kitamura & Mizoguchi’s Functional ontology [36]) to structure the decomposition and allow reuse. 
Sørensen [37] nicely ties the purpose of artefact to the knowledge and communication needed in his 
control system design suggestion seen in Figure 13. 
 
This could be connected to both knowledge definitions (Table 1) and to communication (think about 
the librarian and the search for articles).  The main impact will be on communication.  It is smitten by 
how, what and why of the design phase.  This will influence how data, information or knowledge is 
structured, and it will then connect to the context and interpretation needed to make sense of a 
communiqué.     
 

 

Figure 12 – Designing 
industrial plants [14] 
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 Models used in designing are not usually accessible in later phases of the artefacts life cycles.  This is 
probably not a problem as the artefact is 
completely known and all its “functionality” and 
“goals” lie implicitly in its structure (as structure 
is the only “physical” thing and hence the only 
thing the designer can influence).  The problem 
arises when the system is composed of several 
subsystems, which have to work together, but it 
is not known beforehand which subsystems will 
be present in the final system.  To allow such a 
system to gain some intelligence, they have to be 
able to have a meaningful communication, i.e. 
not only exchange data, but be able to ask more 
“higher level questions” like, “what do you do”, 
“how do you do it” and “why do you do it”.  This 
makes a prerequisite on the models and their 
content (see Table 3). 
 
A further explanation of the encoding needs when subsystems are combined requires consideration of 
the “participants” in the communication.  If a person were to assemble the subsystem, this person 
could “decode” the physical structure into functions and hence obtain the goal of the assembled final 
system.  The person would not need explicitly stated functions and goals to make sense of the final 
system.  If one substitutes the person with a machine, the machine will be “dumb” and only do what 
one tells it to do.  It will, therefore, not be able to deduct the final system function just by knowing its 
physical structure.  It has no context to make functions from the structure, nor does it have the 
intelligence to interpret the functions to a goal.  For the machine to make sense of the final system it 
would require explicitly stated functions and goals of each subsystem and how to deal with these to 
construct the final system functionality and purpose.   

Table 3 - What models include in different setups 

 System Include in model 

When knowing the whole system as in 
integrated designs, modelling only needs to 

includes structure because that will implicitly 
include functions and goals 

 

System boundary

 

Structural view

Functional view

System / Environment / Application view  
The problem arises when the whole system 

setup is not known.  More “abstract” informa-
tion are needed from the design, both 

functionality and purpose / goals, to allow 
later compilation into overall system functions 

and goals 

Subsystem

boundary

Subsystem

boundary

Subsystem

boundary

System boundary

 

Structural view

Functional view

System / Environment / Application view

 
Combining subsystems into system requires 
compilation of overall system functions and 

goals.  This calls for communication on 
multiple levels, i.e. functions and applications 

(goals) to allow for both what’s and why’s 

Subsystem
boundary

Subsystem
boundary

Subsystem
boundary

System boundary

 
Subsystem #1

Subsystem #2

Subsystem #n

. . .

. . .

. 
. .

 
 
To construct the models and their content, but to keep focus on making them as simple as possible, 
working backwards would probably be sensible.  As the models are intended to be a structuring of 
relevant information / knowledge and to be integrated into each subsystem, it would be wise to look at 
what the subsystems need to know to function in the overall system setup.  The communication should 
focus on what and why and not so much how.  That should then help to decide what should be 
modelled and put into place.  To achieve this, one would have to decrease the “context gap” between 
data and information and make interpretation towards knowledge easier.  Of course, there are many 

 

Figure 13 - Designing a control system [37] 
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ways to achieve this.  One is to encode information and make communication explicit, so maybe it 
could be based on ontology [38].  That would allow for structure, but ensure ways to expand and adapt 
the communication.  So, it would be an agent thinking [39] in the modularization of knowledge 
needed, and inspiration should be drawn from the artificial intelligence field.  Another view is offered 
from computer science, that is the knowledge level [40] thinking that wants to make the purpose of the 
system explicit and hence independent of the media in which it is realized.   
 
The building blocks are now all in place, so we can summarize the arguments and present our case for 
why communication should be the main focus when modularizing product knowledge and making 
embedded configuration work. 

7 WHY COMMUNICATION SHOULD BE THE MAIN FOCUS 

It is time to make our case.  The rationale for communication focus has been hinted along the way in 
earlier chapters but this chapter will present a summary of it.  There are two main reasons for focusing 
on communication, namely the encapsulation problem and the communicating between machines 
problem.  Let us start with a look at the encapsulation of knowledge.  To make each subsystem aware 
of its role in the final system, knowledge on its physical structure, functions and goals is needed.  
These three aspects have to be tied together, so that the subsystem can know what physical structure 
gives what functions in order to serve specific goals.  The major issue here is to identify what 
information is needed from the outside to make each subsystem work, and what “services” the 
subsystem can offer the overall system.  By making this communication explicit on a higher level than 
the physical structure level, one could simplify the communication and make it more robust (version 
and upgrade tolerant).  This coincides with Suh’s axiom design [41] for simpler and cleaner designs.  
It will also help modelling the internal knowledge needed and to decide on what should be included.  
It does not serve any purpose to have more than what is needed encapsulated in each subsystem, it is 
though a problem to identify what is actually needed.  
 
The other aspect is communication between machines, here between subsystems.  As the subsystems 
are “dumb” and cannot decode physical structures to functions or goals, those have to be explicitly 
stated within each.  A communication protocol has to be in place to tell the subsystem how to share 
their inner workings and how to be able to participate in the overall system.  If these were not known, 
all other modelling and structuring would be for nought and would not mount anything.  Knowledge is 
not for much if it cannot be communicated.   

8 DISCUSSION  

This research is driven by the need to simplify installations of complex product systems like water 
supply systems and the like.  It assumes that there are several parameterized subsystems that have to 
be connected to form an overall system.  As parameters imply software, this is indeed kind of software 
engineering related and could be seen as such.  It is a sub-goal to suggest a method that is tightly 
coupled with software implementation and that does not require double work in modelling and 
programming.  The thoughts presented here are also much related to distributed artificial intelligence. 
They can be viewed as a tools for constructing such systems and even a start for a method as has been 
sought after[42]. Another thing worth mentioning is that benefits from the suggested solution will only 
be fully reached at a system level, meaning that initial costs of knowledge engineering might be high, 
and it is only when looking at the complete life-cycle of the product system that the rationale makes 
sense.  

9 CONCLUSION 

In this article we have presented a way to simplify setup of complex product systems with the help of 
embedded configuration.  To achieve this one has to focus on what subsystems need to communicate 
to structure the required internal knowledge and to form a communication protocol.  The 
simplification of internal workings is due both to hardware- and application-induced configuration that 
would take place both within the overall system and in each subsystem.  By relating parameters in 
such a way, user inputs should decrease drastically, and the overall usability of the installation 
increases.  In our case we have rationalized that this should be done with embedded configuration and 
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the expected result is enhanced usability.  The next step can be said to be two-folded. Firstly, to 
construct a system based on this philosophy and to show that it actually leads to the expected results. 
And secondly, to further develop the modelling tools and methods for supporting the making of 
embedded configuration systems or in essence, a distributed artificial intelligence system.  
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