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1 INTRODUCTION 
The use of design strategies in product development has received huge attention from academia and 
industry [1]. Some of the strategies include embedding flexibility in product platforms [2] and making 
components more modular to allow component re-use [3]. While there are numerous guidelines on 
how to implement design strategies (for example [4]), one of the main challenges is to decide on the 
appropriate strategies for different components. For example, there is a need to distinguish which 
components should be standardised for high volume production and which components should be 
made flexible to absorb and implement future changes. This paper describes how we can provide 
recommendations and identify misalignments in design strategies by classifying components 
according to their change propagation characteristics. Earlier work on component classification for 
design strategies has been described by Koh et al. [5]. The focus of this paper is to describe the data 
collection process and the interpretation of the results generated.   

2 A DIESEL ENGINE CASE STUDY 
A case study, involving 7 interviews and a two day model building workshop, was carried out in a 
Swedish automotive company to assess if their existing design strategies are suitable from a change 
perspective. The analysis uses the Change Prediction Method (CPM) as described by Clarkson et al. 
[6] to analyse product components according to their change propagation likelihood, impact, and risk. 
These change propagation values are elicited from experts and computed based on components 
connectivity captured in Dependency Structure Matrix (DSM) (see [7] on DSM). The following 
sections describe the data collection process and discuss the results generated from the initial work. 

2.1 Data collection 
The data collection process can be described by the following steps – (1) Decide on the product to be 
analysed. (2) Decide on the appropriate level of component breakdown. (3) Identify linkages between 
components. (4) Assess the likelihood and impact of change propagation for each linkage. (5) Elicit 
relevant component information (e.g. lead-time).  
Based on several discussions between two senior staffs (managers) from the company and the first two 
authors, a heavy duty diesel engine was selected with 32 components identified to represent the entire 
diesel engine. The 32 components were chosen based on two criteria – having a manageable amount 
of components and keeping the right level of details to facilitate meaningful analysis. This was 
followed by the identification of linkages between components and the assessment of their change 
propagation likelihood and impact. A 3-dimensional Computer Aided Design (CAD) model of the 
engine was available to assist the staffs in recalling the linkages. By analysing the components in a 
DSM, 179 direct linkages between the 32 components were identified. These linkages were further 
classified into Mechanical and Proximity, Thermal, Liquid-flow, Electrical, and Control linkage types. 
A direct linkage between two components can be made up of more than one linkage type. In total, 132 
Mechanical and Proximity linkages, 22 Thermal linkages, 44 Liquid-flow linkages, 6 Electrical 
linkages, and 7 Control linkages were identified. Subsequently, the two senior engineers provided an 
indication of the propagation change likelihood and impact as they analyse each linkages. The scale 
used was ‘Low’, ‘Medium’, and ‘High’. Information such as redesign cost and lead time were also 
elicited using the scale of 0 (Low) to 5 (High). In addition, components were classified into ‘in-house’ 
and ‘supplier’ parts. It should be noted that since the company is part of a multi-company organisation, 
a ‘supplier’ part can come from within the organisation. The components were also further classified 



into ‘platform’ and ‘non-platform’ parts. Platform parts can be seen as components that are identified 
for standardisation. The entire data collection process took less than one day.  

2.2 Method of analysis  
The data collected was subsequently analysed by the Change Prediction Method (CPM) tool 
developed in the Cambridge Engineering Design Centre. The CPM tool analyses direct and indirect 
change propagation between components and is capable to classify components according to their 
change characteristics. To proceed with the analysis, the ‘Low’, ‘Medium’, and ‘High’ scale used for 
propagation change likelihood and impact were converted to numerical values. In order to verify that 
the results are insensitive to numerical conversion, four sets of input scales were used to analyse the 
results. The scales are {0.1; 0.5; 0.9}, {0.1; 0.5; 0.7}, {0.3; 0.5; 0.7}, and {0.3; 0.5; 0.9} to represent 
{Low; Medium; High}. The results generated by the four sets of input scales were subsequently 
analysed by the Kendall Tau rank correlation method [8] and were found to be insensitive to the 
choice of input scale. By classifying the components according to their change propagation 
characteristics, different rankings and plots can be generated for analysis.  

2.3 Results and Discussions 
Figure 1a shows a Product Variant Portfolio (PVP) plot of the components with respect to their 
incoming change likelihood and impact [5]. The incoming change likelihood indicates the aggregated 
probability that a component can be affected due to changes in other components while the incoming 
change impact indicates the aggregated effort required to change the component if a change is 
required. In this analysis, the incoming change impact considers the average proportion of redesign 
work required, the average redesign cost, and the component lead-time.   
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Figure 1. (a) Product Variant Portfolio (b) Component data listed according to change impact      

As described in Koh et al. [5], components that fall within the top-left region of the PVP have low 
likelihood of change propagation but will incur high amount of redesign effort if a change is required. 
Therefore, components that fall within this region should be standardised. If a change is required, the 
connectivity between these components and the rest of the product should be reduced to further 
decrease the likelihood of changes propagation. Components that fall within the bottom-right region of 
the PVP have high likelihood of change propagation but require low amount of effort if a change is 
required. Therefore, if a change is required, these components can be redesigned as flexible 
components. This is to reduce the impact of future changes as these components are very likely to be 
changed. Components that fall within the bottom-left region have low likelihood and impact of change 
propagation. These are the least critical components and platform strategies are optional. On the other 
hand, components which fall within the top-right region are likely to be changed and would require 
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high redesign effort. In an ideal case, no component should fall within this region. Recommendations 
on the appropriate design strategies can be made for these components by extending the analysis to 
take into account their outgoing change risk. Detailed explanation can be found in Koh et al. [5].  
Figure 1b shows an excerpt of the classification result with components listed according to their 
incoming change impact. It can be seen from the result that the component with the highest incoming 
change impact is the cylinder head. In addition, the ‘in-house’ components are ranked 1st, 3rd, 6th, and 
12th on the list. Although it is unclear at this point whether the placement of ‘in-house’ components at 
the top half of the list is a cause or an effect, three possible scenarios can be suggested. Firstly, there 
might be a conscious effort to keep components with high change impact in-house so that the company 
has more control over its operation. Alternatively, the outsourcing of components to suppliers can 
reduce the impact of change as part of the changes is carried out by the suppliers. Lastly, the change 
impact values for ‘supplier’ components might be systematically underestimated as the staff in charge 
of the external supply chain did not take part in the change impact analysis. If the result is proven to be 
systematically underestimated, it provides an indication that more needs to be done to let the 
engineering staffs understand the full impact of their engineering changes.  
It can also be seen from Figure 1b that components such as pistons are platform parts. This means that 
the rest of the engine will be designed around these standardised parts. However, it can be seen from 
Figure 1a that the piston falls within the bottom-right region of the PVP, suggesting that it has a high 
likelihood of change propagation and should be made flexible. Such misalignments in design 
strategies sparked discussions among several senior management staffs to reevaluate their platform 
strategies.         

3 CONCLUSION  
This paper describes how component classification in terms of change propagation characteristics can 
be used to provide recommendations and identify misalignments in design strategies. A diesel engine 
case study was described in this paper to illustrate the data collection process, and the generation and 
interpretation of the results. Initial findings suggest that the effective use of component classification 
can help companies identify misalignments in design strategies. More research is required to take 
supply chain and manufacturing switch cost into account.  
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Design Strategies

Economic of scale
(Standardised)

Easy to change
(Flexible)

In-house Out-source

How does engineering change propagation affect these decisions?

Which component?

Which component?

• Engineering• Legislation• Business
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Engineering Change Propagation

• Products redesigned from previous ones

• Change or add features

• Beneficial to keep other parts unchanged

Design with constraints
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Engineering Change Propagation
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Modelling of Change Propagation
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Modelling of Change Propagation
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Modelling of Change Propagation

• Classifies components wrt to 
incoming likelihood & impact

• Recommendations according to 
quadrants

• Correlate with design strategies  

Impact ~ Effort to change 

Likelihood ~ Probability of change

~ Component
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Diesel Engine Case Study

Objective:
Assess current design strategies with a change propagation perspective 

Change Propagation 
Analysis

Data Collection

Evaluation

268



10th International DSM Conference 2008- 11

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Data Collection

Two-day model building workshop:

• Decide on the product

• Component breakdown

• Linkages between component

• Component information

Mech.

Risk

• non-Platform 
• Outsourced

• Platform 
• In-house

• Change propagation characteristics
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Data Collection

Data Summary:

• Heavy Duty Diesel Engine

• 32 Components

• Mech., Elec., Thermal, Liquid, Control

• Lead-time, Redesign cost, etc…

• Likelihood and Impact {L;M;H}

DSM of a Diesel Engine
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Change Propagation Analysis
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Incoming Change Risk –
how components are affected

Outgoing Change Risk –
how components affect others

Risk = Likelihood x Impact
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Change Propagation Analysis
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Evaluation
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17 P. Yes No supplier
18 I. Yes No supplier

25 F.P. No Optional supplier
26 C.B.C.R. Yes No supplier

30 W.H. No No supplier
31 O.F. No Optional supplier
32 E.A. No No supplier

SourceImpact 
Rank

Part 
name 

Platform Parts 

… … … …

… … … …

… … … …

…
…

…

Evaluation

Source:
• Multi-company organisation
• In-house: 1st, 3rd, 6th, & 12th

In-house High Change Impact

• Outsourcing reduce change impact?

• In-house to maintain control?

• Systematically underestimated?

• Mixture of the above?

Causality
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MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Summary

• Change propagation analysis based on DSM

• Supporting the assessment of design strategies 

• Feasible for industrial application  

• Future work – supply chain and manufacturing cost
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