
10TH INTERNATIONAL DESIGN STRUCTURE MATRIX CONFERENCE, DSM’08
11 -12 NOVEMBER 2008, STOCKHOLM, SWEDEN

A DYNAMIC, DSM-BASED VIEW OF SOFTWARE
ARCHITECTURES AND THEIR IMPACT ON QUALITY
AND INNOVATION
Manuel E. Sosa1, Tyson R. Browning2, and Jürgen Mihm1
1INSEAD, Fontainebleau, France
2Neeley School of Business, Texas Christian University, Fort Worth, Texas, USA

Keywords: product architecture, modularity, software development, organizational capabilities

1 INTRODUCTION
Previous work has studied the implications of product architecture decisions to various aspects of the
firm [e.g., 1,7]. However, little attention has been devoted to understand the link between product
architecture characteristics and product performance. How does the architecture of a system influence
its quality and innovative features? More specifically, what are the system architecture features that
managers need to pay attention to in order to prevent quality issues from emerging? What system
architecture features would influence the capability of the development team to improve the system
over time? These questions are particularly relevant in the development of adaptive systems such as
software products which are developed in an additive manner over successive generations [2,3,5].
We address the questions posed above by examining the architecture of software products because
they are complex, exhibit fast change rates (like fruit flies in studies of biological evolution), and offer
(through their source code) an efficient, reliable, and standardized medium to capture their
architecture. Specifically, we examine architectural data as well as data about “bugs“ and “new
features” available over successive versions of several software applications developed by the open-
source foundation, Apache. We provide a structured approach and a set of measures to examine the
architecture of software products not only to predict the number of bugs in the next product release but
also the capability of the development team to fix bugs as well as to add new features. Our results have
theoretical and managerial implications for the development of complex adaptive systems.
This abstract provides only a brief introduction to our work. Our presentation extends the work
discussed by [5] by empirically testing the relationship between software architecture features and the
fixing of bugs as well as the creation of new features.

2 A FRAMEWORK TO STUDY THE IMPACT OF SOFTWARE
ARCHITECTURE ON QUALITY AND INNOVATION
In order to understand how the architecture of a complex, evolving system, such as software products,
influences its quality and innovative features, it is crucial to take a dynamic perspective on the
development process. Figure 1 shows a simplified view of two successive releases of a software
application.

Figure 1. A Dynamic View of Software Development

313

From a user’s perspective, software applications provide certain functionality and capability. As long
as the application provides these reliably and without consuming too many resources (cost, user
friendliness, computer memory, or disk space), the user is generally satisfied. However, that is rarely
the case. Users typically uncover “bugs” and request new functionalities that become evident after
testing and using version x of the software application. From a designer’s standpoint, there are many
alternative ways for the software to provide the specified functionality. Designers or architects must
determine how to allocate the software’s functions to its various components or groups thereof, called
modules. Architects must also determine how the software system will be organized in terms of
command and control modules and components, utilities and other supporting infrastructure
components and modules. These choices determine the nature and extent of the relationships between
components and modules of any version of the software application. These relationships affect the
ease with which components and modules can be changed in successive versions [2,3,5].
The software application version x released at time t has an architecture that, eventually, conditions
how components and modules interact to deliver the specified functionality [2,4,5]. We argue that
there are certain measurable architectural features that predict the deviation between the actual and
specified functionality of the product. In addition, because the product architecture at time t provides
the main platform used by developers to fix its bugs as well as to add novel features to it, it also
conditions the capability of the development team to improve version x+1 to be released at time T.
Figure 2 illustrates graphically the framework we aim to test empirically. Using a DSM-based
representation of the software architecture of version x we measure various architectural features that
are supposed to influence not only the number of bugs associated with version x but also the capability
of the organization to fix those bugs as well as to develop novel features (to be released in the next
version, x+1). From an empirical viewpoint, it is interesting to realize that the number of bugs
associated with version x could also influence the bug fixing and innovative capacity of the
development team working on the next release, x+1. Testing the model shown in Figure 2 has
important managerial implications because it could guide managers to examine the architectural
features that matter for quality and innovation of software products.

Figure 2. A Simple Theoretical Model for Empirical Testing

3 THE EMPIRICAL STUDY
We carry out an empirical study to test whether and how the architecture of software applications
influences their quality and innovative features. Our empirical approach is structured in three steps:

1. Capture the architecture of the software application for successive versions.
2. Capture the number of bugs associated with each version released.
3. Capture the number of novel features associated with each version released.

In order to address our research questions by applying our structured approach, we study readily-
accessible, open-source, Java-based software applications from the Apache foundation. We collected
information from various public sources. (All the information used to build our database is available
at www.apache.org.) We examined all the Java-based applications developed by Apache that would
allow us to apply all three steps of our approach. Those were applications which we could access, for

314

successive major releases, their source code (to codify product architecture features), their bug reports
(to determine number of bugs and bug fixing capability associated with each product version), and
their release notes (to determine the number of innovative features included on each version of the
product). After data purification, we compiled a set of 22 applications with an average of five versions
each.
For each version, developers made up to three types of modifications from the previous version:
“changes,” “tasks,” and “bug fixes.” Changes, as the term is used by Apache, signify a new and better
way of implementing an existing feature or capability of the software. That is, the feature was not
necessarily performing incorrectly (which would be a bug), but someone found a way to provide the
feature more efficiently or effectively—or, the way the feature was implemented had to be adjusted to
accommodate some other change, bug fix, or task. Tasks are new features or capabilities added to the
current version. Bug fixes are corrections of existing features that were not performing correctly.
To measure software architectures features, we first need to represent how the components of the
product interact, how they are grouped into modules, and how modules are organized into a hierarchy.
To capture the basic features that characterize complex system architectures, we use two
complementary representations: a hierarchy tree and a partitioned product DSM [6]. A tree
representation indicates module membership and layering, whereas a product DSM captures the
interactions between components both within and across modules. We invite the interested reader to
refer to [5] for a full description of how we use these representations to capture the architecture of
software applications.

4 DISCUSSION
In our presentation we provide further discussion of our approach and statistical analysis carried out to
test the model shown in Figure 2. We find empirical evidence that shows a significant and positive
association between our simple measures based on the amount of coupling between the elements of a
software application and the number of bugs associated with it. We will also discuss the implications
of this result for quality and innovation management in software development.

REFERENCES
1. Baldwin, C. and K. B. Clark, Design Rules: The Power of Modularity, vol. 1. Cambridge,

MA: MIT Press, 2000.
2. MacCormack, A., J. Rusnak, and C. Y. Baldwin, "Exploring the Structure of Complex

Software Designs: An Empirical Study of Open Source and Proprietary Code," Management
Science, vol. 52, pp. 1015-1030, 2006.

3. Parnas, D.L. On the Criteria To Be Used in Decomposing Systems into Modules. Communications
of the ACM, 15(12), 1053-1058, 1972.

4. Sangal, N., Jordan, E., Sinha, V. and Jackson, D. Using Dependency Models to Manage Complex
Software Architecture. 20th ACM SIGPLAN Conf. on Object-Oriented Programming, Systems,
Languages And Applications (OOPSLA), pp. 167-176 San Diego, CA, 2005).

5. Sosa, M.E., Browning, T.R. and Mihm, J. Studying the Dynamics of the Architecture of Software
Products. ASME 2007 International Design Engineering Technical Conf. & Computers and
Information in Engineering Conf. (IDETC/CIE 2007) Las Vegas, NV, 2007).

6. Steward, D.V. The Design Structure System: A Method for Managing the Design of Complex
Systems. IEEE Transactions on Engineering Management, 28(3), 71-74, 1981.

7. Ulrich, K. "The Role of Product Architecture in the Manufacturing Firm," Research Policy, vol.
24, pp. 419-440, 1995.

Contact: Manuel Sosa
Associate Professor of Technology and Operations Management
INSEAD
Boulevard de Constance
77305 Fontainebleau
France
+33 1 60 72 45 36
manuel.sosa@insead.edu
http://faculty.insead.edu/sosa/personal/

315

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

A Dynamic, DSM-Based View of Software
Architectures and Their Impact on Quality

and Innovation
Manuel E. Sosa

INSEAD, Fontainebleau, France

Tyson Browning
Neeley School of Business, Texas Christian University, USA

Jürgen Mihm
INSEAD, Fontainebleau, France

10th International DSM Conference 2008- 2

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Quality in Software Development

• Bugs and Bug Fixing

– Bugs are “defects” in a software application that prevents it to
conform with its functional requirements

– Most bugs are produced when writing source code, many of them are
identified (by testers and users), and many of them are fixed in
successive releases of the application

316

10th International DSM Conference 2008- 3

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Innovation in Software Development

• Software applications are developed in a flexible manner
(Parnas 1979, MacCormack et al. 2001)

• New and improved functionality are added over successive generations of
an application

• Two types of innovations
– Incremental changes to improve existing software functionality
– Radical changes to add new features/functionality

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Research QuestionsResearch Questions

T days after

Version x at time t Version x+1 at time

y

• How does the system architecture influence quality and innovation in
software development?

t+T

software development?

– Which characteristics of the architecture in version x predict the
number of bugs in version x+1?number of bugs in version x+1?

– What characteristics of the architecture in version x influence the
capability of the organization to fix bugs and improve version x+1?

10th International DSM Conference 2008- 4

317

10th International DSM Conference 2008- 5

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Software architecture

• The scheme by which the elements of the source code are arranged to
deliver the functionality that is required (Parnas 1972, Ulrich 1995)

• Source code of software application as a collection of interdependent
components organized in a hierarchical manner
(Sangal et al. 2005, MacCormack et al. 2006, Sosa et al. 2007)

10th International DSM Conference 2008- 6

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Ant 1.30

*

types util

taskdefs

ant

318

10th International DSM Conference 2008- 7

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Hierarchical View

Ant (top-level)

taskdefs types util

compilers * * regexp

Layer 1

Layer 2

Module with 7
components
(bottom-level)

Module with 63
components
(bottom-level)

Module with 12
components
(bottom-level)

Module with 8
components
(bottom-level)

Module with 4
components
(bottom-level)

*

Module with 23
components
(bottom-level)

Ant version 1.30

10th International DSM Conference 2008- 8

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Two DSM Representations
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

1 .
2 .
3 .
4 .
5 .
6 .
7 .
8 .
9 .

10 .
11 .
12 .
13 .
14 .
15 .
16 .
17 .
18 .
19 .
20 .
21 .
22 .
23 .
24 .
25 .
26 .
27 .
28 .
29 .
30 .
31 .
32 .
33 .
34 .
35 .
36 .
37 .
38 .
39 .
40 .
41 .
42 .
43 .
44 .
45 .
46 .
47 .
48 .
49 1 .
50 1 1 .
51 1 .
52 1 .
53 1 .
54 1 .
55 1 1 1 .
56 1 1 1 1 1 .
57 1 .
58 1 1 .
59 1 1 1 1 .
60 1 1 .
61 1 1 1 .
62 1 1 1 1 1 1 1 .
63 1 1 .
64 1 1 1 .
65 1 . 1
66 1 .
67 1 .
68 1 .
69 1 .
70 1 .
71 1 1 1 1 .
72 1 1 1 1 1 1 1 1 1 .
73 1 1 1 1 1 1 .
74 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .
75 1 1 1 1 1 1 1 .
76 1 1 1 1 1 1 .
77 1 1 1 1 1 1 1 1 1 1 1 1 .
78 1 1 1 . 1
79 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1
80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .
81 1 1 1 1 1 .
82 1 1 1 1 1 . 1
83 1 .
84 1 1 1 .
85 1 1 1 1 1 .
86 1 1 . 1
87 1 1 1 1 1 1 .
88 1 1 1 1 1 1 1 1 . 1
89 1 . 1
90 1 1 1 .
91 .
92 1 1 .
93 .
94 1 1 .
95 1 1 1 1 1 1 1 .
96 .
97 .
98 1 .
99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .

100 1 1 1 1 1 1 .
101 1 .
102 1 1 .
103 1 .
104 1 1 1 .
105 1 1 .
106 1 .
107 1 1 .
108 1 1 1 .
109 1 .
110 1 .
111 1 .
112 1 1 1 1 1 1 1 1 1 1 .
113 1 1 1 .
114 1 1 1 .
115 1 1 1 .
116 1 1 1 1 1 .
117 1 1 .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

1 . 1
2 1 .
3 1 .
4 1 .
5 1 .
6 1 1 1 1 .
7 1 . 1
8 .
9 .

10 .
11 .
12 .
13 .
14 .
15 .
16 .
17 .
18 .
19 .
20 .
21 .
22 .
23 .
24 .
25 .
26 .
27 .
28 .
29 1 .
30 1 1 .
31 .
32 .
33 .
34 1 1 1 1 1 .
35 .
36 .
37 .
38 .
39 1 .
40 1 1 1 1 1 1 1 1 1 .
41 .
42 .
43 1 .
44 1 1 1 1 1 1 .
45 .
46 .
47 .
48 .
49 .
50 1 1 .
51 .
52 .
53 1 1 1 1 1 1 .
54 .
55 .
56 .
57 .
58 .
59 .
60 1 1 .
61 1 .
62 1 .
63 1 1 1 .
64 1 1 .
65 1 1 1 1 1 1 .
66 1 1 1 1 1 1 1 1 1 1 1 1 .
67 1 .
68 1 .
69 1 1 1 .
70 1 .
71 1 1 .
72 1 1 2 2 2 1 2 2 1 1 2 1 2 2 2 1 2 1 1 .
73 1 2 .
74 1 1 1 .
75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1
76 1 1 1 .
77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .
78 1 1 1 1 1 .
79 1 1 1 1 1 .
80 1 1 1 1 1 1 . 1
81 1 1 1 1 1 1 .
82 1 1 .
83 . 1
84 1 .
85 1 1 .
86 1 .
87 1 1 1 .
88 .
89 1 1 1 1 1 1 1 .
90 1 1 1 1 1 1 1 1 1 1 .
91 .
92 .
93 1 .
94 1 1 1 .
95 .
96 .
97 1 1 1 1 1 1 1 .
98 .
99 .

100 .
101 1 1 1 1 .
102 1 1 .
103 1 1 . 1
104 1 1 1 1 1 . 1
105 1 1 1 . 1
106 1 .
107 1 1 1 .
108 1 1 . 1
109 1 1 1 1 1 1 1 1 . 1
110 1 . 1
111 1 1 1 .
112 1 .
113 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .
114 1 .
115 1 1 1 .
116 1 1 1 1 1 .
117 1 1 .

$root

Com
Jav
Jav
Jike
Jvc
Def
Com
Ant
Ava
Cop
Del
Ech
Exe
Exi
Filte
GU
GZ
Jav
Key
Mkd
Ren
SQ
Sen
Tas
Tst
Cal
Chm
Tra
Ant
Exe
Ge
Sig
Cvs
Exe
Jav
Jav
Jike
Pat
Pro
Exe
Wa
Com
Jar
Log
Cop
Del
Exp
FixC
Get
Jav
Jike
Mo
Pum
Rep
Rm
Tar
Unt
UpT
XS
Zip
Cop
Exe
Exe
Exe
Log
Ma
Stre
Tas
Tou
XS

Comma
Comma
Environ
Mappe
Path
ZipFileS
FileSet
Pattern
DataTy
Enume
Refere
ZipSca

DO
Fla
Glo
Ide
Me

BuildLo
BuildLis

Reg
Sou
File
Jak
Jak
Reg
Reg

Main
NoBan
XmlLog
Default

Project
BuildEv
Unknow
Introsp
TaskAd
Target
Task
Runtim

Locatio
PathTo

Consta
Desirab
AntClas

Project
Directo
BuildEx
FileSca

A Flat Product DSM A Hierarchical Product DSM

319

10th International DSM Conference 2008- 9

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Architectural Characteristics

• Number of components (N)
• Number of interactions (K)
• Complexity (NK), Density (K/(N(N-1))

• Connectedness

– Propagation cost (MacCormack et al. 2006)

• Average probability that any two components are (directly
or indirectly) connected

• Coupling

– The section(s) of the architecture in which the components
are involved in coupled interdependence (i.e. design loops)

10th International DSM Conference 2008- 10

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Types of Interdependence

A

B

A

B

C C

No
Interdependence

Serial
Interdependence

A

B

C

Coupled
Interdependence

320

10th International DSM Conference 2008- 11

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Intrinsic Coupling

The number of
components involved in
design iterations in a
unconstrained “flat”
product DSM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

1 .
2 .
3 .
4 .
5 .
6 .
7 .
8 .
9 .

10 .
11 .
12 .
13 .
14 .
15 .
16 .
17 .
18 .
19 .
20 .
21 .
22 .
23 .
24 .
25 .
26 .
27 .
28 .
29 .
30 .
31 .
32 .
33 .
34 .
35 .
36 .
37 .
38 .
39 .
40 .
41 .
42 .
43 .
44 .
45 .
46 .
47 .
48 .
49 1 .
50 1 1 .
51 1 .
52 1 .
53 1 .
54 1 .
55 1 1 1 .
56 1 1 1 1 1 .
57 1 .
58 1 1 .
59 1 1 1 1 .
60 1 1 .
61 1 1 1 .
62 1 1 1 1 1 1 1 .
63 1 1 .
64 1 1 1 .
65 1 . 1
66 1 .
67 1 .
68 1 .
69 1 .
70 1 .
71 1 1 1 1 .
72 1 1 1 1 1 1 1 1 1 .
73 1 1 1 1 1 1 .
74 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .
75 1 1 1 1 1 1 1 .
76 1 1 1 1 1 1 .
77 1 1 1 1 1 1 1 1 1 1 1 1 .
78 1 1 1 . 1
79 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1
80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .
81 1 1 1 1 1 .
82 1 1 1 1 1 . 1
83 1 .
84 1 1 1 .
85 1 1 1 1 1 .
86 1 1 . 1
87 1 1 1 1 1 1 .
88 1 1 1 1 1 1 1 1 . 1
89 1 . 1
90 1 1 1 .
91 .
92 1 1 .
93 .
94 1 1 .
95 1 1 1 1 1 1 1 .
96 .
97 .
98 1 .
99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .

100 1 1 1 1 1 1 .
101 1 .
102 1 1 .
103 1 .
104 1 1 1 .
105 1 1 .
106 1 .
107 1 1 .
108 1 1 1 .
109 1 .
110 1 .
111 1 .
112 1 1 1 1 1 1 1 1 1 1 .
113 1 1 1 .
114 1 1 1 .
115 1 1 1 .
116 1 1 1 1 1 .
117 1 1 .

“Intrinsically”
coupled components

10th International DSM Conference 2008- 12

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Actual Coupling

util

*

types

ta
sk

de
fs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

1 . 1
2 1 .
3 1 .
4 1 .
5 1 .
6 1 1 1 1 .
7 1 . 1
8 .
9 .

10 .
11 .
12 .
13 .
14 .
15 .
16 .
17 .
18 .
19 .
20 .
21 .
22 .
23 .
24 .
25 .
26 .
27 .
28 .
29 1 .
30 1 1 .
31 .
32 .
33 .
34 1 1 1 1 1 .
35 .
36 .
37 .
38 .
39 1 .
40 1 1 1 1 1 1 1 1 1 .
41 .
42 .
43 1 .
44 1 1 1 1 1 1 .
45 .
46 .
47 .
48 .
49 .
50 1 1 .
51 .
52 .
53 1 1 1 1 1 1 .
54 .
55 .
56 .
57 .
58 .
59 .
60 1 1 .
61 1 .
62 1 .
63 1 1 1 .
64 1 1 .
65 1 1 1 1 1 1 .
66 1 1 1 1 1 1 1 1 1 1 1 1 .
67 1 .
68 1 .
69 1 1 1 .
70 1 .
71 1 1 .
72 1 1 2 2 2 1 2 2 1 1 2 1 2 2 2 1 2 1 1 .
73 1 2 .
74 1 1 1 .
75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1
76 1 1 1 .
77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .
78 1 1 1 1 1 .
79 1 1 1 1 1 .
80 1 1 1 1 1 1 . 1
81 1 1 1 1 1 1 .
82 1 1 .
83 . 1
84 1 .
85 1 1 .
86 1 .
87 1 1 1 .
88 .
89 1 1 1 1 1 1 1 .
90 1 1 1 1 1 1 1 1 1 1 .
91 .
92 .
93 1 .
94 1 1 1 .
95 .
96 .
97 1 1 1 1 1 1 1 .
98 .
99 .

100 .
101 1 1 1 1 .
102 1 1 .
103 1 1 . 1
104 1 1 1 1 1 . 1
105 1 1 1 . 1
106 1 .
107 1 1 1 .
108 1 1 . 1
109 1 1 1 1 1 1 1 1 . 1
110 1 . 1
111 1 1 1 .
112 1 .
113 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .
114 1 .
115 1 1 1 .
116 1 1 1 1 1 .
117 1 1 .

$root

Com
Jav
Jav
Jike
Jvc
Def
Com
Ant
Ava
Cop
Del
Ech
Exe
Exi
Filte
GU
GZ
Jav
Key
Mkd
Ren
SQ
Sen
Tas
Tst
Cal
Chm
Tra
Ant
Exe
Ge
Sig
Cvs
Exe
Jav
Jav
Jike
Pat
Pro
Exe
Wa
Com
Jar
Log
Cop
Del
Exp
FixC
Get
Jav
Jike
Mo
Pum
Rep
Rm
Tar
Unt
UpT
XS
Zip
Cop
Exe
Exe
Exe
Log
Ma
Stre
Tas
Tou
XS

Comma
Comma
Environ
Mappe
Path
ZipFileS
FileSet
Pattern
DataTy
Enume
Refere
ZipSca

DO
Fla
Glo
Ide
Me

BuildLo
BuildLis

Reg
Sou
File
Jak
Jak
Reg
Reg

Main
NoBan
XmlLog
Default

Project
BuildEv
Unknow
Introsp
TaskAd
Target
Task
Runtim

Locatio
PathTo

Consta
Desirab
AntClas

Project
Directo
BuildEx
FileSca

The number of
components
involved in design
iterations in a
hierarchical
constrained product
DSM

321

10th International DSM Conference 2008- 13

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

The Effects of Coupling

• Coupling in the product architecture is associated with iterative
problem solving (Smith and Eppinger 1997, Mihm et al. 2003)

• Developers involved in design iterations typically make
assumptions to solve their technical problems

– If assumptions were not correct, either the source code is
reworked or bugs are likely to be generated

• Iterative problem solving associated with coupling in the product
architecture is likely to propagate changes iteratively and
consume more resources than expected

10th International DSM Conference 2008- 14

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

The Effects of Connectivity

• The more interconnected the elements in a system the less modular it
is and the easier changes propagate through it
(Clarkson et al. 2004, Sosa et al. 2007)

• Excessive interconnectedness is redundancy in the structure of the
source code which demands for improvement actions
(MacCormack et al. 2006)

322

10th International DSM Conference 2008- 15

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Three Hypotheses

• Coupling in version x is positively associated with number of bugs
in version x+1

• Coupling in version x is negatively associated with number of bugs
fixed in version x+1

• Connectedness in version x is positively associated with the level
of improvements included in version x+1

10th International DSM Conference 2008- 16

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

• The applications
– Open-source Java-based tools for automating software development
– 20 applications with complete data about

• Source code to capture the software architecture
• Bug reports to capture the number of bugs and bug fixes
• Release notes to capture the incremental and radical changes

– On average, 7 versions per applications

323

10th International DSM Conference 2008- 17

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Architectural Measures

• Coupling
– Number of groups of coupled components
– Number of elements involved in design iterations

• Connectedness
– Propagation cost = probability that component i can

reach component j

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

1 .
2 .
3 .
4 .
5 .
6 .
7 .
8 .
9 .

10 .
11 .
12 .
13 .
14 .
15 .
16 .
17 .
18 .
19 .
20 .
21 .
22 .
23 .
24 .
25 .
26 .
27 .
28 .
29 .
30 .
31 .
32 .
33 .
34 .
35 .
36 .
37 .
38 .
39 .
40 .
41 .
42 .
43 .
44 .
45 .
46 .
47 .
48 .
49 1 .
50 1 1 .
51 1 .
52 1 .
53 1 .
54 1 .
55 1 1 1 .
56 1 1 1 1 1 .
57 1 .
58 1 1 .
59 1 1 1 1 .
60 1 1 .
61 1 1 1 .
62 1 1 1 1 1 1 1 .
63 1 1 .
64 1 1 1 .
65 1 . 1
66 1 .
67 1 .
68 1 .
69 1 .
70 1 .
71 1 1 1 1 .
72 1 1 1 1 1 1 1 1 1 .
73 1 1 1 1 1 1 .
74 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .
75 1 1 1 1 1 1 1 .
76 1 1 1 1 1 1 .
77 1 1 1 1 1 1 1 1 1 1 1 1 .
78 1 1 1 . 1
79 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1
80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .
81 1 1 1 1 1 .
82 1 1 1 1 1 . 1
83 1 .
84 1 1 1 .
85 1 1 1 1 1 .
86 1 1 . 1
87 1 1 1 1 1 1 .
88 1 1 1 1 1 1 1 1 . 1
89 1 . 1
90 1 1 1 .
91 .
92 1 1 .
93 .
94 1 1 .
95 1 1 1 1 1 1 1 .
96 .
97 .
98 1 .
99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .

100 1 1 1 1 1 1 .
101 1 .
102 1 1 .
103 1 .
104 1 1 1 .
105 1 1 .
106 1 .
107 1 1 .
108 1 1 1 .
109 1 .
110 1 .
111 1 .
112 1 1 1 1 1 1 1 1 1 1 .
113 1 1 1 .
114 1 1 1 .
115 1 1 1 .
116 1 1 1 1 1 .
117 1 1 .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

1 . 1
2 1 .
3 1 .
4 1 .
5 1 .
6 1 1 1 1 .
7 1 . 1
8 .
9 .

10 .
11 .
12 .
13 .
14 .
15 .
16 .
17 .
18 .
19 .
20 .
21 .
22 .
23 .
24 .
25 .
26 .
27 .
28 .
29 1 .
30 1 1 .
31 .
32 .
33 .
34 1 1 1 1 1 .
35 .
36 .
37 .
38 .
39 1 .
40 1 1 1 1 1 1 1 1 1 .
41 .
42 .
43 1 .
44 1 1 1 1 1 1 .
45 .
46 .
47 .
48 .
49 .
50 1 1 .
51 .
52 .
53 1 1 1 1 1 1 .
54 .
55 .
56 .
57 .
58 .
59 .
60 1 1 .
61 1 .
62 1 .
63 1 1 1 .
64 1 1 .
65 1 1 1 1 1 1 .
66 1 1 1 1 1 1 1 1 1 1 1 1 .
67 1 .
68 1 .
69 1 1 1 .
70 1 .
71 1 1 .
72 1 1 2 2 2 1 2 2 1 1 2 1 2 2 2 1 2 1 1 .
73 1 2 .
74 1 1 1 .
75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1
76 1 1 1 .
77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .
78 1 1 1 1 1 .
79 1 1 1 1 1 .
80 1 1 1 1 1 1 . 1
81 1 1 1 1 1 1 .
82 1 1 .
83 . 1
84 1 .
85 1 1 .
86 1 .
87 1 1 1 .
88 .
89 1 1 1 1 1 1 1 .
90 1 1 1 1 1 1 1 1 1 1 .
91 .
92 .
93 1 .
94 1 1 1 .
95 .
96 .
97 1 1 1 1 1 1 1 .
98 .
99 .

100 .
101 1 1 1 1 .
102 1 1 .
103 1 1 . 1
104 1 1 1 1 1 . 1
105 1 1 1 . 1
106 1 .
107 1 1 1 .
108 1 1 . 1
109 1 1 1 1 1 1 1 1 . 1
110 1 . 1
111 1 1 1 .
112 1 .
113 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .
114 1 .
115 1 1 1 .
116 1 1 1 1 1 .
117 1 1 .

$root

Com
Jav
Jav
Jike
Jvc
Def
Com
Ant
Ava
Cop
Del
Ech
Exe
Exit
Filte
GU
GZi
Jav
Key
Mkd
Ren
SQ
Sen
Tas
Tsta
Cal
Chm
Tra
Ant
Exe
Gen
Sig
Cvs
Exe
Jav
Jav
Jike
Pat
Pro
Exe
Wa
Com
Jar
Log
Cop
Del
Exp
FixC
Get
Jav
Jike
Mov
Pum
Rep
Rm
Tar
Unt
UpT
XSL
Zip
Cop
Exe
Exe
Exe
Log
Mat
Stre
Tas
Tou
XSL

Comma
Comma
Environ
Mapper
Path
ZipFileS
FileSet
Pattern
DataTy
Enume
Referen
ZipSca

DO
Flat
Glo
Iden
Mer

BuildLo
BuildLis

Reg
Sou
File
Jak
Jak
Reg
Reg

Main
NoBann
XmlLog
Default

Project
BuildEv
Unknow
Introspe
TaskAd
Target
Task
Runtim

Locatio
PathTo

Consta
Desirab
AntClas

Project
Directo
BuildEx
FileSca

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

1 .
2 .
3 .
4 .
5 .
6 .
7 .
8 .
9 .

10 .
11 .
12 .
13 .
14 .
15 .
16 .
17 .
18 .
19 .
20 .
21 .
22 .
23 .
24 .
25 .
26 .
27 .
28 .
29 .
30 .
31 .
32 .
33 .
34 .
35 .
36 .
37 .
38 .
39 .
40 .
41 .
42 .
43 .
44 .
45 .
46 .
47 .
48 .
49 1 .
50 1 1 .
51 1 .
52 1 .
53 1 .
54 1 .
55 1 1 1 .
56 1 1 1 1 1 .
57 1 .
58 1 1 .
59 1 1 1 1 .
60 1 1 .
61 1 1 1 .
62 1 1 1 1 1 1 1 .
63 1 1 .
64 1 1 1 .
65 1 . 1
66 1 .
67 1 .
68 1 .
69 1 .
70 1 .
71 1 1 1 1 .
72 1 1 1 1 1 1 1 1 1 .
73 1 1 1 1 1 1 .
74 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .
75 1 1 1 1 1 1 1 .
76 1 1 1 1 1 1 .
77 1 1 1 1 1 1 1 1 1 1 1 1 .
78 1 1 1 . 1
79 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1
80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .
81 1 1 1 1 1 .
82 1 1 1 1 1 . 1
83 1 .
84 1 1 1 .
85 1 1 1 1 1 .
86 1 1 . 1
87 1 1 1 1 1 1 .
88 1 1 1 1 1 1 1 1 . 1
89 1 . 1
90 1 1 1 .
91 .
92 1 1 .
93 .
94 1 1 .
95 1 1 1 1 1 1 1 .
96 .
97 .
98 1 .
99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .

100 1 1 1 1 1 1 .
101 1 .
102 1 1 .
103 1 .
104 1 1 1 .
105 1 1 .
106 1 .
107 1 1 .
108 1 1 1 .
109 1 .
110 1 .
111 1 .
112 1 1 1 1 1 1 1 1 1 1 .
113 1 1 1 .
114 1 1 1 .
115 1 1 1 .
116 1 1 1 1 1 .
117 1 1 .

10th International DSM Conference 2008- 18

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Putting All Together

Intrinsic Coupling
(in flat architecture) x

Connectedness x

BugFixing x+1

Changes x+1

Bugs x+1

Actual Coupling
(with hierarchical modules) x +

-

+

324

10th International DSM Conference 2008- 19

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Results
Bugs BugFixing Changes

Total number of bugs 0.817*** 0.371

Total number of bugs fixed -0.398

Age: Days from 1st release 0.054** -0.006 -0.019**

Days to nxt release 0.131*** -0.034** 0.007

Newness 0.568** -0.094 -0.080

nominal modules -2.700** -0.557 -2.125***

N -1.005** -0.279*** 0.646***

K -0.117* 0.083*** -0.096***

Network Density -4007*** -522 -1002!

of coupled groups with hierarchies 30.503***

of coupled comps with hierarchies 1.605***

coupled groups flat 2.618**

of coupled comps flat -0.771***

Connectedness: propagation cost 418.6***

Age x Connectedness -0.139!

Adj R^2 0.7159 0.9714 0.5698

Obs= 108 * < .1 ** <.05 ***<.001
All models include fixed effects for each of the 20 applications

10th International DSM Conference 2008- 20

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Conclusions

• Can we predict bugs, bug fixing, and changes for improvement of
software systems by looking at its architecture?
– Yes!

✓ Actual coupling of the architecture of a system positively
influences its number of bugs

✓ Intrinsic coupling of the architecture of a system negatively
influences the capability to fix bugs

✓ The internal interconnectedness of the architecture of a system
positively influences the need to continuously improve it.

325

