10™ INTERNATIONAL DESIGN STRUCTURE MATRIX CONFERENCE, DSM’08
11 -12 NOVEMBER 2008, STOCKHOLM, SWEDEN

A DYNAMIC, DSM-BASED VIEW OF SOFTWARE
ARCHITECTURES AND THEIR IMPACT ON QUALITY
AND INNOVATION

Manuel E. Sosa', Tyson R. Browning? and Jiirgen Mihm'

'INSEAD, Fontainebleau, France
2Neeley School of Business, Texas Christian University, Fort Worth, Texas, USA

Keywords: product architecture, modularity, software development, organizational capabilities

1 INTRODUCTION

Previous work has studied the implications of product architecture decisions to various aspects of the
firm [e.g., 1,7]. However, little attention has been devoted to understand the link between product
architecture characteristics and product performance. How does the architecture of a system influence
its quality and innovative features? More specifically, what are the system architecture features that
managers need to pay attention to in order to prevent quality issues from emerging? What system
architecture features would influence the capability of the development team to improve the system
over time? These questions are particularly relevant in the development of adaptive systems such as
software products which are developed in an additive manner over successive generations [2,3,5].

We address the questions posed above by examining the architecture of software products because
they are complex, exhibit fast change rates (like fruit flies in studies of biological evolution), and offer
(through their source code) an efficient, reliable, and standardized medium to capture their
architecture. Specifically, we examine architectural data as well as data about “bugs“ and “new
features” available over successive versions of several software applications developed by the open-
source foundation, Apache. We provide a structured approach and a set of measures to examine the
architecture of software products not only to predict the number of bugs in the next product release but
also the capability of the development team to fix bugs as well as to add new features. Our results have
theoretical and managerial implications for the development of complex adaptive systems.

This abstract provides only a brief introduction to our work. Our presentation extends the work
discussed by [5] by empirically testing the relationship between software architecture features and the
fixing of bugs as well as the creation of new features.

2 A FRAMEWORK TO STUDY THE IMPACT OF SOFTWARE
ARCHITECTURE ON QUALITY AND INNOVATION

In order to understand how the architecture of a complex, evolving system, such as software products,
influences its quality and innovative features, it is crucial to take a dynamic perspective on the
development process. Figure 1 shows a simplified view of two successive releases of a software
application.

*Developers fix
Software app bugs and add Software app
version x new features version x+1
released at released at
time time T

Figure 1. A Dynamic View of Software Development

313

From a user’s perspective, software applications provide certain functionality and capability. As long
as the application provides these reliably and without consuming too many resources (cost, user
friendliness, computer memory, or disk space), the user is generally satisfied. However, that is rarely
the case. Users typically uncover “bugs” and request new functionalities that become evident after
testing and using version x of the software application. From a designer’s standpoint, there are many
alternative ways for the software to provide the specified functionality. Designers or architects must
determine how to allocate the software’s functions to its various components or groups thereof, called
modules. Architects must also determine how the software system will be organized in terms of
command and control modules and components, utilities and other supporting infrastructure
components and modules. These choices determine the nature and extent of the relationships between
components and modules of any version of the software application. These relationships affect the
ease with which components and modules can be changed in successive versions [2,3,5].

The software application version x released at time ¢ has an architecture that, eventually, conditions
how components and modules interact to deliver the specified functionality [2,4,5]. We argue that
there are certain measurable architectural features that predict the deviation between the actual and
specified functionality of the product. In addition, because the product architecture at time ¢ provides
the main platform used by developers to fix its bugs as well as to add novel features to it, it also
conditions the capability of the development team to improve version x+1 to be released at time 7.
Figure 2 illustrates graphically the framework we aim to test empirically. Using a DSM-based
representation of the software architecture of version x we measure various architectural features that
are supposed to influence not only the number of bugs associated with version x but also the capability
of the organization to fix those bugs as well as to develop novel features (to be released in the next
version, x+1). From an empirical viewpoint, it is interesting to realize that the number of bugs
associated with version x could also influence the bug fixing and innovative capacity of the
development team working on the next release, x+1. Testing the model shown in Figure 2 has
important managerial implications because it could guide managers to examine the architectural
features that matter for quality and innovation of software products.

Number of
bugs
associated
with version x

Software 4
architecture Number of bugs
metrics of associated with

version x version x that

has been fixed

oy
Number of
novel features
released in
version x+1

Figure 2. 4 Simple Theoretical Model for Empirical Testing

3 THE EMPIRICAL STUDY
We carry out an empirical study to test whether and how the architecture of software applications
influences their quality and innovative features. Our empirical approach is structured in three steps:

1. Capture the architecture of the software application for successive versions.

2. Capture the number of bugs associated with each version released.

3. Capture the number of novel features associated with each version released.

In order to address our research questions by applying our structured approach, we study readily-
accessible, open-source, Java-based software applications from the Apache foundation. We collected
information from various public sources. (All the information used to build our database is available
at www.apache.org.) We examined all the Java-based applications developed by Apache that would
allow us to apply all three steps of our approach. Those were applications which we could access, for

314

successive major releases, their source code (to codify product architecture features), their bug reports
(to determine number of bugs and bug fixing capability associated with each product version), and
their release notes (to determine the number of innovative features included on each version of the
product). After data purification, we compiled a set of 22 applications with an average of five versions
each.

For each version, developers made up to three types of modifications from the previous version:

“changes,” “tasks,” and “bug fixes.” Changes, as the term is used by Apache, signify a new and better
way of implementing an existing feature or capability of the software. That is, the feature was not
necessarily performing incorrectly (which would be a bug), but someone found a way to provide the
feature more efficiently or effectively—or, the way the feature was implemented had to be adjusted to
accommodate some other change, bug fix, or task. Tasks are new features or capabilities added to the
current version. Bug fixes are corrections of existing features that were not performing correctly.

To measure software architectures features, we first need to represent how the components of the
product interact, how they are grouped into modules, and how modules are organized into a hierarchy.
To capture the basic features that characterize complex system architectures, we use two
complementary representations: a hierarchy tree and a partitioned product DSM [6]. A tree
representation indicates module membership and layering, whereas a product DSM captures the
interactions between components both within and across modules. We invite the interested reader to
refer to [5] for a full description of how we use these representations to capture the architecture of
software applications.

4 DISCUSSION

In our presentation we provide further discussion of our approach and statistical analysis carried out to
test the model shown in Figure 2. We find empirical evidence that shows a significant and positive
association between our simple measures based on the amount of coupling between the elements of a
software application and the number of bugs associated with it. We will also discuss the implications
of this result for quality and innovation management in software development.

REFERENCES

1. Baldwin, C. and K. B. Clark, Design Rules: The Power of Modularity, vol. 1. Cambridge,
MA: MIT Press, 2000.

2. MacCormack, A., J. Rusnak, and C. Y. Baldwin, "Exploring the Structure of Complex
Software Designs: An Empirical Study of Open Source and Proprietary Code," Management
Science, vol. 52, pp. 1015-1030, 2006.

3. Parnas, D.L. On the Criteria To Be Used in Decomposing Systems into Modules. Communications
of the ACM, 15(12), 1053-1058, 1972.

4. Sangal, N., Jordan, E., Sinha, V. and Jackson, D. Using Dependency Models to Manage Complex
Software Architecture. 20" ACM SIGPLAN Conf. on Object-Oriented Programming, Systems,
Languages And Applications (OOPSLA), pp. 167-176 San Diego, CA, 2005).

5. Sosa, M.E., Browning, T.R. and Mihm, J. Studying the Dynamics of the Architecture of Software
Products. ASMFE 2007 International Design Engineering Technical Conf. & Computers and
Information in Engineering Conf. (IDETC/CIE 2007) Las Vegas, NV, 2007).

6. Steward, D.V. The Design Structure System: A Method for Managing the Design of Complex
Systems. IEEE Transactions on Engineering Management, 28(3), 71-74, 1981.

7. Ulrich, K. "The Role of Product Architecture in the Manufacturing Firm," Research Policy, vol.
24, pp. 419-440, 1995.

Contact: Manuel Sosa

Associate Professor of Technology and Operations Management
INSEAD

Boulevard de Constance

77305 Fontainebleau

France

+33 160 72 45 36

manuel.sosa@insead.edu
http://faculty.insead.edu/sosa/personal/

315

MANAGE COMPLEX SYSTEMS

10TH INTERNATIONAL DSM CONFERENCE

- A Dynamic, DSM-Based View of Software
. Architectures and Their Impact on Quality
g and Innovation

Manuel E. Sosa
INSEAD, Fontainebleau, France

Tyson Browning

("\ Neeley School of Business, Texas Christian University, USA
‘J“ Jirgen Mihm
_w* INSEAD, Fontainebleau, France
m Technische Universitat Miinchen - ELL:EL. x&".lf:lhﬁ _ {ez ey
MANAGE COMPLEX SYSTEMS
Quality in Software Development

il » Bugs and Bug Fixing
e

‘ — Bugs are “defects” in a software application that prevents it to

w conform with its functional requirements

‘ﬂ' — Most bugs are produced when writing source code, many of them are
B identified (by testers and users), and many of them are fixed in
‘ \ successive releases of the application

Technische Universitat Minchen

10th International DSM Conference 2008- 2

316

MANAGE COMPLEX SYSTEMS

Innovation in Software Development

o » Software applications are developed in a flexible manner

aw (Parnas 1979, MacCormack et al. 2001)

ia * New and improved functionality are added over successive generations of
Wi, an application

'

\{ " « Two types of innovations

"‘ﬂ”, — Incremental changes to improve existing software functionality

"5\\, — Radical changes to add new features/functionality

\/ 1 {

%

m JCREGFRG [e
EUSIHE
Technische Universitat Miinchen —

10th International DSM Conference 2008- 3

MANAGE COMPLEX SYSTEMS

Research Questions

% T days after
ﬁ':-::-.

Version x at time t Version x+1 at time

\
%{ t+T

4 ® How does the system architecture influence quality and innovation in
software development?

A8 ' — Which characteristics of the architecture in version x predict the
;(/" number of bugs in version x+17?
’V { — What characteristics of the architecture in version x influence the

’fﬁ/ capability of the organization to fix bugs and improve version x+171?

m f_ ::5-"
P ST
. AT, B BT
Technische Ui Munchen e

10th International DSM Conference 2008- 4

317

MANAGE COMPLEX SYSTEMS

Software architecture

MANAGE COMPLEX SYSTEMS

Technische Universitat Minchen

Ant 1.30
Ant
taskdefs O
J

318

Technische Universitat Minchen

The scheme by which the elements of the source code are arranged to
deliver the functionality that is required (Parnas 1972, Ulrich 1995)

Source code of software application as a collection of interdependent
components organized in a hierarchical manner
(Sangal et al. 2005, MacCormack et al. 2006, Sosa et al. 2007)

10th International DSM Conference 2008- 5

10th International DSM Conference 2008- 6

MANAGE COMPLEX SYSTEMS

Hierarchical View

Ant version 1.30

Ant (tob

Layer 1 taskdefs types

Layer 2 /\

compilers *

Module with 12

components

(bottom-level)
Module with 23
components
(bottom-level)

Module with 4

components
(bottom-level)

Module with 7 Module with 8
components components
(bottom-level) (bottom-level)

Module with 63
components
(bottom-level)

m |ERICF RGINTE SR ATIDRAL m

Technische Universitat Miinchen 2o e e

10th International DSM Conference 2008- 7

MANAGE COMPLEX SYSTEMS

Two DSM Representations

it ﬂ;

s

A Flat Product DSM A Hierarchical Product DSM

m JERIGP BG IHT ESRATICNAL E

Technische Universitét Minchen e senan Mo
10th International DSM Conference 2008- 8

319

MANAGE COMPLEX SYSTEMS

Architectural Characteristics

\ Number of components (N)
® Number of interactions (K)
Complexity (NK), Density (K/(N(N-1))

/
[}

[}

| Connectedness
bl
!”w — Propagation cost (MacCormack et al. 2006)
% "W ® Average probability that any two components are (directly
i“‘ | or indirectly) connected
(‘(%;‘ﬂt ® Coupling
) 4 — The section(s) of the architecture in which the components
'1’ are involved in coupled interdependence (i.e. design loops)
m e Mumhe:oth Internz-ational DSM Conference 2008- 9
MANAGE COMPLEX SYSTEMS

Types of Interdependence

% :
iy
&\ iiﬁ No Serial Coupled
¢" Interdependence Interdependence Interdependence

£ B
JEREGE hiG IMTESR ATIDRAL ."' ';
BUHHES: 3CHIOL
Technische Universitat Minchen Som s g sk

10th International DSM Conference 2008- 10

320

MANAGE COMPLEX SYSTEMS

',ﬂ S ‘The number of
components involved in

g\ design iterations in a

@\ unconstrained “flat”

’ product DSM

Intrinsic Coupling

MANAGE COMPLEX SYSTEMS

The number of

| components
involved in design
iterations in a

. hierarchical

%@, constrained product

\

{ DSM

Actual Coupling

m cncnt.:u ESRATIDRAL ﬁ
EBUHMES: ICHDOL

Technische Universitat Minchen Samtinn T e

10th International DSM Conference 2008- 11

]
CRFEREE R

m crl.cncu EIRATITNAL ﬁ
BUSHES: SCHIOL

Technische Universitat Miinchen Sz e e

10th International DSM Conference 2008- 12

321

MANAGE COMPLEX SYSTEMS

The Effects of Coupling

a Coupling in the product architecture is associated with iterative
\ problem solving (Smith and Eppinger 1997, Mihm et al. 2003)

Developers involved in design iterations typically make
assumptions to solve their technical problems

— If assumptions were not correct, either the source code is
reworked or bugs are likely to be generated

® lterative problem solving associated with coupling in the product

architecture is likely to propagate changes iteratively and
consume more resources than expected

Technische Universitat Minchen

10th International DSM Conference 2008- 13

MANAGE COMPLEX SYSTEMS
The Effects of Connectivity
| \\‘,
w\w ® The more interconnected the elements in a system the less modular it
is and the easier changes propagate through it

(Clarkson et al. 2004, Sosa et al. 2007)

Excessive interconnectedness is redundancy in the structure of the
source code which demands for improvement actions
(MacCormack et al. 2006)

Technische Universitat Minchen

10th International DSM Conference 2008- 14

322

MANAGE COMPLEX SYSTEMS

Three Hypotheses

® Coupling in version x is positively associated with number of bugs
in version x+1

® Coupling in version x is negatively associated with number of bugs
fixed in version x+1
® Connectedness in version x is positively associated with the level
of improvements included in version x+1
Technische Universitét Minchen cnﬁ':;_&;_ f':f'ngl:m
10th International DSM Conference 2008- 15
MANAGE COMPLEX SYSTEMS

~ - e Apache Software Foundation
http:f/www. apache._ org/

® The applications
— Open-source Java-based tools for automating software development

— 20 applications with complete data about

® Source code to capture the software architecture

® Bug reports to capture the number of bugs and bug fixes

® Release notes to capture the incremental and radical changes
— On average, 7 versions per applications

VyE Q@ CACTYS
'@’hadamp

Technische Universitat Minchen

b o
m f .f i
|ChEQF hG IMTESRATITRAL T

ELHTMES: ICHDIL

10th International DSM Conference 2008- 16

323

MANAGE COMPLEX SYSTEMS

Architectural Measures

® Coupling
— Number of groups of coupled components
— Number of elements involved in design iterations

® Connectedness

— Propagation cost = probability that component i can
reach component j

m |CREGF hG INTESRATIDNAL ﬁ

Technische Universitat Minchen asces memaans N

10th International DSM Conference 2008- 17

MANAGE COMPLEX SYSTEMS

Putting All Together

_Actual Coupling
\ W(With hierarchical modules) x \
f Bugs x+1
Intrinsic Coupling S

(in flat architecture) x

BugFixing x+1

.
0
0
0
.
.
.,

m |ERICF R IMTESR ATIDRAL ﬁ

Techrnische Universitat Miinchen s semans s

10th International DSM Conference 2008- 18

324

MANAGE COMPLEX SYSTEMS

Results

BugFixing Changes

Adj RA2

Obs=108 *<.1 * <05 ***<.001 TI.ITI
All models include fixed effects for each of the 20 applications [enna

Technische Universitat Minchen

10th International DSM Conference 2008- 19

MANAGE COMPLEX SYSTEMS
Conclusions

b= ® Can we predict bugs, bug fixing, and changes for improvement of

Yt software systems by looking at its architecture?

— Yes!

v Actual coupling of the architecture of a system positively
influences its number of bugs

v Intrinsic coupling of the architecture of a system negatively
influences the capability to fix bugs

v The internal interconnectedness of the architecture of a system
positively influences the need to continuously improve it.

&
m |ERKCP LG 14T ESRATIDNAL .
EUHHER: (CHDOL
Technische Universitat Miinchen pra——

10th International DSM Conference 2008- 20

325

