
6-31ICED'09
ICED’09/381

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED'09
24 - 27 AUGUST 2009, STANFORD UNIVERSITY, STANFORD, CA, USA

A PLANARITY-BASED COMPLEXITY METRIC

Sebastian Kortler, Matthias Kreimeyer, Udo Lindemann
Institute of Product Development, Technische Universität München

ABSTRACT
Complexity in product design, e.g. in product architectures or process structures, continuously
increases. To properly evaluate a complex system or to compare it to other systems, complexity
metrics enable the numerical assessment of a system’s underlying structure. The more complex such a
structure is, the more likely it is to have many linkages between the elements. Typically, the number of
edges that cross each other increases with the degree of complexity. This fact is used to derive a
complexity metric that computes the distance of a given network from an ideally planar graph, i.e. a
network that has no edges that cross each other.
The approach proposed closes an existing lack of structural criteria and metrics and complements the
existing possibilities to measure structural complexity, i.e. the particular interaction of a system’s
elements and their interdependencies. To this day, planarity is not used in this context.
The metric is developed based on a state-of-the-art algorithm and tested with a small example from an
industrial design process to illustrate its independence to existing complexity metrics.

Keywords: complexity, planarity, metric, structural criteria, systematic assessment, process metric

1 INTRODUCTION
Manufacturing technical products implies complex design processes. While there are many facets to
such complexity, one perspective is to characterize products and their design processes by their
underlying structures. In order to handle and manage such structures, various methods e.g. from
systems engineering can be used. However, comparing and evaluating the characteristics of a complex
structure makes it necessary to measure the degree of complexity by determining underlying patterns
and different structural criteria and then evaluating their extent and impact numerically. To do so,
complexity metrics provide the possibility to compare and to assess such structures.

1.1 Complexity in product design – an industrial case
Complexity in product design continuously increases. In order to pass the challenge of growing
complexity caused by markets, products and processes, companies have to control their design
processes and the underlying structure, as this structure governs the system’s behavior [1].

Figure 1: Part of the dependencies between tasks in an automotive design process

6-31

6-32 ICED'09
ICED’09/381

Complexity in a product can result for example from variants; considering e.g. the development of car
components, different variants result from the progress and adaptation of certain parts. Typically, not
all of these variants can be combined with each other. Changing one single component may therefore
result in extensive impacts on other components, causing high costs and many secondary adaptations
[2]. An evaluation of change propagation complexity levels could therefore be an efficient means for
management to assess on – a strategic level – what risks might be implied changing the product
architecture at what level.
Figure 1 shows a snapshot from a graph representing how tasks of a design process are interlinked via
the documents that are produced by each task or that serve as an input to a task: Each node (numbered
for nondisclosure reasons) represents a task, each edge linking two nodes at a time represents a
document. The figure vizualizes a section of an automotive design process for a premium class SUV,
in particular the design, simulation and testing of onboard electronic equipment (mainly controller
design). In total, the process consists of 15 sub-processes (pre-defined modules within the overall
process, three of which can be seen in the figure), set up from 377 tasks and 237 different documents.
In average, each task has 1.65 edges, i.e. the process is rather densely networked, especially
considering the fact that the process model is only of average quality, as 51 tasks are unconnected.
As the process is broken down into 15 different sub-processes, one relevant question for process
management is how these sub-processes can be prioritized when it comes to re-engineering or
improving them. To this end, among other aspects (e.g. run-time, total cost, available human
resources,…), the structure of the process gives evidence how easily the process is to be understood by
an engineer involved in the process, and the evolution of the structure over time can point to the
process that has grown the most complex and that needs attention first. Therefore, a metric that
represents the degree of complexity to the system “process” could serve as a means of better assessing
such a system.
In summary, complexity appears to be many-sided, being situated everywhere. However, different
systems can have different levels of complexity; a simple device can be little complex, while an
aircraft certainly will be highly complex. Nevertheless, the underlying structure follows the same basic
principles [3, 4] at a more abstract level. For many applications it can be of interest to assess the
degree of complexity of a system (or a specific part or view thereof), especially when it comes to
comparing different systems of the same kind.

1.2 Problem description
The most common way to measure a system’s quality is by applying metrics that characterize the
system properly. There have been different approaches to measure the complexity of a system (cf.
section two). Yet, as will be shown, no approaches have been made to evaluate the degree of planarity
of a network structure representing a system: The more complex a system, the more likely it is to have
many linkages between the elements; the more linkages there are, the more likely it is that these
linkages cross each other, which in graph theory refers to the fact that the structure is not planar. The
concept that is thus presented in this paper is to characterize the degree of complexity of a system by
its measure of its distance from an ideal plane wherein the structure would be fully planar.

1.3 Definitions

System
A system is created by entities and their interdependencies that form a system’s structure, that possess
individual properties, and that contribute to fulfill the system’s purpose [5]. Systems are delimitated by
a system border and connected to their surroundings by inputs and outputs. Changes to parts of a
system can be characterized by dynamic effects and result in a specific system behavior. In this paper
variation over time is not considered [6].

Complexity
Complexity in product development does not represent a problem per se; rather it is the lack of ability
of users to control complexity that leads to severe consequences. Consequently, improved control of
complexity allows for enhanced possibilities in product development [3]. In fact, this definition relates
to the fact that a system is perceived as complex (in contrast to “simple”), if it is difficult to understand
and verify because of its large number of elements, dependencies, and states.

6-32

6-33ICED'09
ICED’09/381

Structure
“Structure” is understood as the network formed by dependencies (edges) between a system’s entities
(nodes). It furthermore relates to the semantics of this network; the structure of a system therefore
always contributes – in its constellation – to the purpose of the system. Structures and their subsets can
be analyzed by means of computational approaches, primarily provided by the graph theory and
related sciences [3].

Structural Characteristic
A structural characteristic is understood as a particular constellation of nodes and edges, i.e. it is
formed by a particular pattern formed from nodes and edges ([3][7]). The characteristic gains its
meaning by the way the pattern is related to the actual system it is part of, i.e. it must serve a special
purpose in the context of the overall system [5]. A structural characteristic only possesses significance
in the context of the system it is describing.

1.4 Structure of this paper
Having elicited the problem this paper focuses on and the required basic terminology, first, a state of
the art is laid out to explain the background of how structural complexity can be managed; in addition
to this, a differentiation of structural characteristics and existing complexity metrics is presented and
classified against its mathematical foundations to discover possible gaps in the research and
application of methods of structural complexity (section 2). To fill the gap that is identified for
planarity, a planarity-based metric is developed using the state-of-the-art algorithms available (section
3). The metric is tested on four real examples to prove its validity (section 4). Section 5 concludes the
paper with a short reflection.

2 RELATED WORK

2.1 Structural Complexity Management
Most commonly, structural complexity management is based on matrix-based approaches that
represent how elements (as rows and columns) are interconnected (by a number in the cell that links a
row to a column). Originating from a process focus with the first published formulation of a Design
Structure Matrix (DSM) [8], a whole community has developed around this research. The DSM is able
to model and analyze dependencies of one single type within one single domain. Browning [9]
classifies four types of DSMs to model different types of problems: component-, team, activity-, and
parameter-based DSMs. However, many other classifications exist (e.g. [3]) nowadays.
There are numerous algorithms to analyze the overall structure of the relationships within a DSM;
starting from the original algorithms for tearing, banding and partitioning [10][11] to a still non-
exhaustive list provided by [3].
The authors of [12] have extended DSM to DMM, i.e. Domain Mapping Matrices, to enable matrix
methodology to include not just one domain at a time but to allow for the mapping between two
domains. [3] has taken this approach further to model whole systems consisting of multiple domains,
each having multiple elements, connected by various relationship types. The author refers to this
approach as Multiple-Domain Matrix (MDM), providing a number of ways to analyze the system’s
structure across multiple domains, condensing each single analysis into one aggregate DSM.
In fact, many of the algorithms that are used in matrix-based methodologies are applications of graph
theory, which provides for the mathematical foundation of describing networks. To this end, network
and graph theory are closely interconnected and not easy to separate. Whereas network theory focuses
on the global features of mostly random networks, graph theory addresses structural features that
originate from the interaction of single nodes and edges of a network structure. Graph theory is often
traced back to Euler’s works (e.g. [13]), and network theory can be comprehended as the research of
[14-18].

Classification of structural characteristics
Almost all of the approaches to structural complexity management look into what characteristic
qualities can be found in a structure, from the level of a global structure down to the integration of
individual nodes. However, structural characteristics and complexity metrics are rarely discerned

6-33

6-34 ICED'09
ICED’09/381

strictly. While a structural characteristic relates to the pattern of nodes and edges as shown in figure 2,
a complexity metric relates to condensing one or more structural characteristics into a numerical value.
Figure 2 orders the structural characteristics as provided by [3] by the evaluation of the number of
edges and nodes that form a structure. In fact, most of the characteristics can be traced back to a few
basic elements (e.g. a hierarchy is a special kind of path taking attainability into account).

nodes

isolated
node

n

start / end node

leaf

transit edge

(bus)

bridge
node

transit
node

path

complete
cluster

spanning
tree

biconnected
component

cycle

similarity

split / join

hierarchy

1 n
edges

1

Figure 2. Basic structural entities

2.2 Complexity Metrics

Basic complexity metrics
Complexity metrics are most common in software engineering. There, the computational complexity
rather refers to the degree of computational power that is needed to execute an algorithm [19].
However, there is also much work available in software engineering that focuses on quality metrics for
software code. [20] gives a comprehensive overview of how to use these metrics. The focus is on
using metrics for the understanding, evaluating, controlling and forecasting of a software program.
Most of the metrics focus, in fact, on evaluating the dependencies within a software code, and as such
are closely related to structural complexity. A set of requirements to evaluate such metrics is know
commonly as Weyuker’s properties exists to evaluate whether a metric is a good metric [21].
Other researchers built on this foundation and set up metrics to describe workflows, mostly based on
the EPC notation, evaluating them for possible bottle necks, modeling errors and the robustness of the
overall structure of the workflow concerning decision points [7, 22]; again, the authors use Weyuker’s
properties to evaluate their metrics [23].
[24] develops a general measure of structural complexity, regarding the similarities and differences
between design problem complexity, design process complexity, and design artifact complexity. The
authors indentify size, degree of coupling, and solvability as the three fundamental aspects of
complexity, and measures for each aspect are defined. However, these measures are developed
specifically for parametric and geometric problems.
Based on a stochastic model, [25] develops a complexity measure that estimates the complexity of a
process by evaluating the interaction between partially autonomous actors in a concurrent engineering
setting. The measure evaluates numerical DSMs, i.e. it is based on weighted edges, and estimates the
amount of information necessary to complete a process.
A more pragmatic set of metrics is proposed by [26]. In this approach, different structural criteria from
[3] are condensed into 53 different metrics that are used in conjunction with a process meta-model to
describe the different aspects of a process as comprehensively as possible.

Complexity metrics involving planarity
To assess a network’s understandability [27] used planarity, as it allows for the determination of the
ascertainability of the network model. There, the lowest number of dimensions to obtain a planar
graph serves as a cognitive volume in order to describe the transparency of the process model.

6-34

6-35ICED'09
ICED’09/381

[28] develops a cognitive weight to evaluate software complexity by examining the cognitive weights
of basic control structures of software. As such, it is based on empirically founded characteristic
values. The measure is used as a description of the human ability to grasp the global structure being
made up of individual parts. The work is based on the hypothesis that the more “intertwined” a
structure of a flow is, the more complex the system is. To measure this degree of complexity, the
structure is broken down into individual nodes and their immediate surroundings, to which then an
individual cognitive weight is attributed. The approach thus does not describe the degree of planarity
directly, but it only evaluates each node’s individual contribution to a possibly non-planar graph.

Complexity metrics involving planarity
Structural characteristics and structural metrics sometimes overlap, while all make use of phenomena
that are described in graph theory. Table 1 illustrates the available basic phenomena in graph theory,
based on [13]. Although there is no complete one-on-one relationship between phenomena, structural
criteria and structural metrics possible, the table regroups what phenomenon a structural criterion
focuses on; the same is done for complexity metrics. For each, the table shows whether the
mathematical phenomenon has an application in engineering design or not. As can be seen, there are a
number of phenomena that have no application (yet). While there has been some work into planarity
so far, no detailed analysis of its general applicability as a structural criterion that can be found
(meaningfully) in any kind of structure has been made to the best knowledge of the authors. Having
proven basically useful, nevertheless, as shown in the previous section, this research therefore further
investigates the usability of planarity as a measure for complexity to extend the available set of means
to describe structural complexity.

Table 1. Phenomena in graph theory and their application in structural criteria and
complexity metrics

Graph Theory Structural Criteria available Complexity Metrics available
Cliques, Subgraph Strongly Connected Components (√) √

Walks Cycles (√)
Paths (√)

Distance (√)

√
√
√

Trees Leafs (√)
Roots (√)

Spanning Trees (√)
Knots(√)

√
√
√
√

Minors, Embeddings ?
Adjacency and

Degree
Neighborhood (√)

Bridges(√)
Degree (Activity…) (√)

Independence (×)
Connectivity (Attainability,…) (√)

×
√
√
√
√

Genus Planarity (×)
Thickness (√)

(√)
(√)

Weighted graphs and
networks

Weighted Nodes (√)
Weighted Edges (√)

Minimum Spanning Tree(√)
Shortest Path (√)

√
√
√
√

Coloring Chromatic Number (√×)
K-Coloring (×)

Color-Classes (×)

×
×
×

Multipartite Graphs Disjunctive sets (×)
N-Partite Graphs (√)

×
√

Eigenvalues Eigenspectra (×) ×

6-35

6-36 ICED'09
ICED’09/381

3 PLANARITY AS A COMPLEXITY MEASURE

3.1 Planarity
A planar graph is defined as a graph that can be embedded in the plane with all its edges and nodes
not crossing each other. Figure 3 gives an example. According to Kuratowskis’s Theorem, a finite
graph is planar if it does not contain a subgraph that is a subdivision of K5 or K3,3 (because the graphs
the K3,3 and the K5 represent the smallest non-planar graphs, see figure 4) [29].

Figure 3. Planar and non planar examples

Figure 4. The smallest non-planar graphs

Planarity Testing - available algorithms
Testing for planarity is a rather difficult problem, for which a number of algorithms have been
developed. Path addition [30] was the first planarity testing algorithm working in linear time. It uses
depth-first search and implements an iterative version. PQ tree vertex addition method [31] is based on
the PQ tree data structure (i.e. a tree-based data structure that represents a family of permutations on a
set of elements). It embeds one vertex of a graph at each step in an order given by a “st-numbering” of
the vertices (i.e. a particular way of labeling each edge, in which neighboring edges are numbered in a
way that each edge has a neighbor with one lower and higher number as a neighbor). After each step
permuting and reversing pieces of the graph are used to preserve planarity. Later, these two methods
were combined to form the PC tree vertex addition method [32]. This planarity testing algorithm is
significantly simpler than classical methods based on a new type of data structure called the PC tree
and a postorder traversal of the depth-first search tree of the vertices. The first simplified O(n) (i.e.
allowing for computation in linear time) algorithm was the edge addition method [33], originally
inspired by the PQ tree method. Instead of PQ trees it uses an edge to be the fundamental unit of
addition to the partial embedding, while preserving planarity. The algorithm uses the fact that
subgraphs can become biconnected by adding a single edge. This method is currently state of the art
and therefore used in this work.

3.2 Strategies to describe the degree of planarity
Determining if a graph is planar is relatively easy for a small graph. However, the more the degree of
cross-linking rises, the lower the probability of planarity. Measuring complexity in product
development implies working with systems which elements are interlinked profoundly. Thus, the basic
planarity criterion is not applicable unless extended to work with large structures.
In order to describe how far away from planarity a given graph G = (V, E) is (V is the set of vertices or
nodes, E the set of edges), the degree of planarity is used in the maximal planarization problem
(maximum planar subgraph [34]). Maximal planarization generates a subgraph G’ of G, to which no
edge of G – G’ can be added while preserving planarity. A maximum planar subgraph G’ is a
subgraph of maximum size amongst all planar subgraphs of G. In order to generate the maximum
planar subgraph, different maximal planar subgraphs need to be compared with each other.
The maximum planarization problem is NP-hard (i.e. it is a nondeterministic problem that can be
computed in polynomial-time). As such, the maximum planarization algorithm provides a
measurement which quantifies the distance between the respective structure and a planar structure in
one special case. Hence, the measurement is not qualified to serve as a complexity metric. In order to
use the degree of planarity, it is necessary not only to evaluate special cases of the given structure, but
all cases. Therefore, the measurement that is proposed here uses the mean value across all distances of
all maximal planar graphs from the original graph as a complexity measure.

6-36

6-37ICED'09
ICED’09/381

3.3 A metric describing planarity (description of generating a mean value)
The basic idea to measure complexity in structure using planarity is to count the number of edges,
which need to be removed for preserving planarity (maximal planarization). However, the number of
edges which need to be removed depends on the ordering of the edges as shown in Figure 5. Choosing
the minimum number of edges, which need to be removed, will lead to the maximum planarization
problem. Considering the ordering of edges leads to permute the set of edges and analyze each of the
permutations separately. Every analyzed permutation results in a numerical value. In order to generate
a complexity measure, a mean value consisting of all permutation results is calculated.

Figure 5. The number of edges to remove depends on the order

3.4 Aspects of implementation

Permutation and computation
To completely evaluate the mean value of all possible outcomes of the maximum planarization
problem, all possible permutations from the set of edges need to be generated. The number of
permutations is n! (n factorial), where n is the number of edges of the graph to be evaluated. The
number of permutations grows quickly with the number of elements of the set, which renders
computation almost impossible even for small graphs. Classic recursive permutation algorithms that
work on standard PC hardware are not applicable already for graphs with more than 10 edges, because
memory leaks will occur (i.e. the amount of information is too big to be managed by the operating
system). It is possible to use multithreading and advanced iterative permuting algorithms to generate
new permutations and analyze them at the same time, and this opens a possibility to compute larger
structures because it is possible to deallocate memory used by finished permutations. In contrast, the
recursive versions need to calculate all permutations before evaluating each of them.

Evaluating a single permutation
During the generation of all permutations from the set of edges, each of the created permutations can
be analyzed using the edge addition method [33]. The algorithm starts with an empty set of edges.
After adding the next edge from the ordering, a simple planarity-test is performed. At this point, there
are two possibilities: Either the subgraph is still planar, or it is not. If the subgraph G’ is planar, the
algorithm adds the next ordered edge. Otherwise the subgraph G’ is non-planar, the algorithm counts
all the remaining edges in the ordering which are not included in the subgraph. This integer-value is
stored to calculate the metric later.

Generating a mean value
After the algorithm is started and after e.g. 1000 permutations are available, the results of these
permutations are evaluated as described above. This is done in parallel, using a so called thread-object
to facilitate parallelization. After finishing the evaluation, a mean-value is calculated from the
analyzed permutations and returned it to the main-method. This way, many intermediate values are
calculated, from which, at the end, an overall mean that equals the resulting complexity is computed.
To reduce computation time, all thread-objects calculate mean-values for different permutations at the
same time. When all permutations are done and all thread-objects finished their evaluation, the main
method calculates the mean-value, using all mean-values from the thread-objects. The thread-objects
enable a multiprocessor or multi-core system to run the threads at the same time, with each processor
or core running a particular thread. It is even possible to run such a parallelized algorithm on a cluster
of workstations. This fact is important because of the O(n!*n) complexity, i.e. of the computation time
that is maximum proportional to the number of edges by the factor n!*n.

6-37

6-38 ICED'09
ICED’09/381

To accelerate the algorithm, it is possible to use samples (1% is an appropriate value) in order to
reduce large amount of permutations. This is possible because the iterative algorithm changes the
structure only very slowly, permuting one edge at a time. At 1% of the samples only one sample out of
every 100 is evaluated; as the 100 different structures are all rather similar, very little accuracy is
actually lost thereby, and the calculation of the mean value this way will still lead to a very good
approximation of the degree of planarity, providing an average number of how many edges need to be
removed to generate a planar graph.

4 INDEPENDENCE AND GAIN OF THE PLANARITY METRIC

4.1 Weyuker’s criteria and the planarity metric
[21] states nine criteria for a metric to be a good metric for measuring complex systems. The paper
gives quite mathematic definitions for the criteria, Therefore [35] is used for its more evidence-
orientated way. Weyuker’s criteria are designed to qualify software metrics as appropriate. Cardoso
[35] proposed the ability of Weyuker’s criteria to be used to evaluate workflow processes as well, as
running a workflow is indeed similar to executing a software program. Weyuker’s criteria therefore
also apply to the metric here, as it is used up to now to evaluate processes as shown in figure 1. These
processes are modelled ex-post and represent, as such, a workflow-like character.
Weyuker’s criteria are the following:
1. A metric cannot measure all software programs as being equally complex.
2. There are only a finite number of programs of the same complexity.
3. Each different program may be complex.
4. The complexity of a program depends on its implementation; even if two programs solve the

same problem, they can have different complexities.
5. The complexity of two programs joined together is greater than the complexity of either program

considered separately.
6. If a program of a given complexity is created by joining two other programs, this does not

necessarily mean that the resulting program will be of equal complexity, even if the two added
program are of equal complexity.

7. A permuted version of a program can have a different complexity, i.e. the order of statements
matters.

8. If a program is a straight renaming of another program, its complexity should be the same as the
original program.

9. The complexity of two programs joined together may be greater than the sum of their individual
complexities.

Table 2. The proposed planarity metric and Weyuker’s criteria

Weyuker’s
criteria

proposed Planarity-Metric

1. √ Only one single differing edge in 2 structures results in different values.
2. √ This criterion correctly used is fulfilled, but there are infinitive structures with the

same complexity, if the structures differ in planar parts. It is possible to include the
number of edges and the number of nodes in order to avoid this criterion.

3. √ This criterion is not affected by the evaluation concerning planarity.
4. √ The fourth criterion is fulfilled. Two different processes may do the same, but vary

in their planar-metric.
5. × This criterion is not applicable considering the planar-metric.
6. × This criterion is not applicable considering the planar-metric.
7. √ This criterion addresses the basic principle of the planarity metric.
8. √ The evaluated structure is not affected by names.
9. × This criterion is not applicable considering the planar-metric.

Additionally, a good metric should be scaled purposefully, implying that the results the metric yields
should cover a significant range; for the metric proposed in this research, this holds true, as the
outcome of the metric states the average number of edges that need to be removed to obtain a planar
graph; as such, the results will be >1 for any non-planar graph.

6-38

6-39ICED'09
ICED’09/381

Furthermore, a user needs to be aware whether the metric that is applied correlates to other available
metrics. The best scenario is, of course, if all metrics are orthogonal to each other. A comparison to
relevant other metrics is therefore shown in the following.

4.3 Case Study
In order to show the differences between the planarity metric and other structural metrics, four graphs
as shown in figure 6 were analyzed. For each of them, the mean degree of cross linking, the number of
cycles and the mean path length are illustrated in table 3. All graphs that were used for the
examination of the proposed planarity metrics were taken from the process model shown in figure 1.

Setup of case study
Each of the graphs consists of 6 nodes and 11 edges, and every couple of graph was varied in two
edges. For each graph, the algorithm (implemented in Java) was run for about one hour to compute a
value for the planarity based metric on a standard dual core CPU. Working with samples (only 1
percent of all permutations was taken into account) enabled the metric to calculate the complexity of a
single graph with 11 edges in under one minute. The use of samples causes a variation of the results
only after the second decimal place.

Figure 6. Example DSMs and graphs to show differences to established structural metrics

Findings and implications
In the case study used, the complexity metric differs significantly from the other complexity metrics
that were possibly correlating. At the same time, it was found that the result calculated with standard
complexity metrics (number of cycles, the mean branch factor and the mean path length) remains
almost identical across the four different graphs; yet, the planarity metric varies in all 4 graphs
(table 3). This means, considering the described case study, the calculated informative values are
different to each other. The proposed metrics lead to different complexity values. Hence, there is gain
of information using the planarity metric.

Table 3. Results of the case study

Graph Planarity
Metric (exact)

Planarity Metric
(approximation sample size)

Number
of Cycles

Degree of
cross linking

Mean path
length

1% 0.1% 0.01%
a 1.0000 1.000 1.000 1.000 37 3.7 1.267
b 1.0278 1.023 1.024 1.016 39 3.7 1.267
c 1.6111 1.613 1.628 1.641 36 3.7 1.267
d 1.3287 1.331 1.350 1.369 39 3.7 1.267

The planarity metric was computed as an exact solution, i.e. by evaluating every single permutation as
explained before. Also, it was calculated for a 1% sample, a 0.1% sample and a 0.01% sample to see
the trend of the approximation. As can be clearly seen, there is a slight deviation from the exact

6-39

6-40 ICED'09
ICED’09/381

measure. However, considering that there is a very high probability that a graph is not 100% exact,
this is a very slight error. A mathematical proof of the extent, however, remains to be done.

5 DISCUSSION AND CONCLUSION
Structural awareness becomes more important regarding all possible domains. In different design
processes it is necessary to take complexity metrics into account. Small changes in structures can
cause high impacts, so all available information about structure should be used.
There are different scenarios that motivate the use of complexity metrics:
• comparing different systems at a given time to prioritize the investment of resources into e.g.

rework: e.g. a process manager might be interested to compare a number of process architectures
he is responsible for; to know which of them is the most complex and thus bears the highest
potential to cause errors, a complexity metric is purposeful to identify the most complex process
to start improvement with

• tracing changes over time to schedule possible improvements: e.g. a product architecture that is
designed in a CAD system using parametric interdependencies possibly grows more and more
complex during the detailing, and more and more parameters might be introduced; to trace the
degree of complexity, a design engineer can employ complexity metrics to better estimate the
degree of stability of his architecture

• assessing complex structures at an abstract level to estimate e.g. the amount of effort: for
example in project planning, a linear timeline is desirable to guarantee smooth process execution;
if, however, the tasks are interlinked in a way that no ideal sequence can be reached (as e.g.
triangularization for a DSM would provide), an approximation of the degree of non-planarity of
the possible process helps the planner to judge how much effort will need to be put into
communication during process runtime

• identification of improvement potential, possibly serving as a fitness function in a genetic
algorithm: e.g. the design of a wire harness is a most complex task, and without proper
algorithmic optimization it is almost impossible to design a robust and cost-efficient architecture
of the electrical wiring; to achieve an almost planar wire harness, i.e. one that has the least
number of cables crossing each other, a genetic algorithm that removes single edges to see how
the structure could be optimized, could use a complexity metric like the one proposed here as a
fitness function; equally, if several options of removing a cable here or there, the evaluation of
which structure is less complex (i.e. more planar) would prove useful

• assessment of the human cognitive ability to understand a designed system (similar to [27]): the
more complex technical systems get, the more complex is also the interaction with these systems;
assessing how easily a system can be comprehended (e.g. a flowchart of a process or the various
states of a product and their mutual dependencies) can serve to better design a system and to
judge how users will possibly interact with it; commonly, the more intertwined a system is, the
harder it is to understand, therefore a planarity-based metric could well serve the purpose

There are numerous fields of application that go well beyond the examples given above. Product
architectures are a common field of structural complexity management, as is process management.
Equally, complex interdependencies can be found in organizational design and market structures.
However, the focus of this paper was not to develop possible use cases but to extend the set of
available complexity metrics in an explorative manner and prove the validity of the results using an
example from process management, which could be shown even using a small example.
Future research will be twofold: On the one hand, the other gaps as identified in table 1 will be filled
to complete the set of available methods to describe any given structure comprehensively.
On the other hand, the existing structural criteria and metrics will be applied to larger structures
(products, processes,…) to systematically test their significance; this was not possible here for
computational reasons. To this end, either a large cluster is necessary to provide an exact reference to
triangulate approximations that can later serve as pragmatic descriptions for the metric, or various
approximations and the trends that develop for larger structures to then deduce the average error can
be used. As of now, the above described algorithm cannot handle structures exceeding 20 edges, as the
biggest problem is still to generate the necessary permutations. A strategy to break down the structure
into smaller computable elements is therefore under research to render the calculation more efficient.

6-40

6-41ICED'09
ICED’09/381

ACKNOWLEDGEMENTS
This work was possible as part of the Research Centre “SFB 768 - Managing cycles in innovation
processes”. The work was carried out in the research project A2 “Modellierung und Analyse
disziplinenübergreifender Zusammenhänge”, which aims at researching a methodology to assess
company-wide network structures across all disciplines involved in generating innovative product-
service-systems (PSS). The Research Center is funded by the German Research Foundation (DFG).
The authors would like to express their gratitude for making this research possible.

REFERENCES
[1] Deger, R. Managing Complexity in Automotive Engineering. In Lindemann, U., Danilovic, M.,

Deubzer, F., Maurer, M. and Kreimeyer, M., eds. 9th International DSM Conference, p. 13-23
(Shaker, Munich, 2007).

[2] Giffin, M.L., De Weck, O.L., Buonova, G., Keller, R., Eckert, C.M. and Clarkson, P.J. Change
propagation analysis in complex technical systems. ASME 2007 International Design
Engineering Technical Conferences (IDETC/CIE2007) (ASME, Las Vegas, Nevada, 2007).

[3] Maurer, M. Structural Awareness in Complex Product Design. Lehrstuhl für Produktentwicklung
(TU München, München, 2007).

[4] Barabási, A.-L. Linked. (Penguin Books, London, 2003).
[5] Boardman, J. and Sauser, B. System of Systems - the meaning of of. System of Systems

Engineering, 2006 IEEE/SMC.
[6] Haberfellner, R., Nagel, P., Becker, M., Büchel, A. and von Massow, H., eds. Systems

Engineering: Methodik und Praxis 2002.
[7] Cardoso, J. Approaches to Compute Workflow Complexity. Dagstuhl Seminar „The Role of

Business Processes in Service Oriented Architectures“ (Dagstuhl, Germany, 2006).
[8] Steward, D.V. The design structure system: A method for managing the design of complex

systems. IEEE Transactions on Engineering Management, 1981, 28, 71–74.
[9] Browning, T. Applying the Design Structure Matrix to System Decomposition and Integration

Problems: A Review and New Directions. IEEE Transactions on Engineering Management,
2001, 48(3), 292-306.

[10] Kusiak, A. Engineering Design: Products, Processes and Systems. (Academic Press, San Diego,
1999).

[11] Steward, D. Partitioning and Tearing Systems of Equations. Journal of the Society for Industrial
and Applied Mathematics: Series B, Numerical Analysis, 1965, 2(2), 345-365.

[12] Danilovic, M. and Browning, T.R. Managing complex product development projects with design
structure matrices and domain mapping matrices. International Journal of Project Management,
2007, 25(3), 300-314.

[13] Gross, J.L. and Yellen, J. Graph Theory and its Applications. (Chapman & Hall/CRC, Boca
Raton, 2005).

[14] Erdoes, P. and Rényi, A. On Random Graphs I. Publicationes Mathematicae Debrecen, 1959, 6
(290).

[15] Watts, D.J. and Strogatz, S.H. Collective Dynamics of 'Small-world' Networks. Nature, 1998, 393
(6684), 440-442.

[16] Barabási, A.-L. and Albert, R. Emergence of Scaling in Random Networks. Science, 1999, 286
(5439), 509-512.

[17] Strogatz, S.H. Exploring complex networks. Nature, 2001, 19 (410), 53.
[18] Albert, R., Jeong, H. and Barabasi, A.L. Error and Attack Tolerance of Complex Networks.

Nature, 2000, 406 (6794), 378-382.
[19] Papadimitriou, C.H. Computational Complexity. (Addison-Wesley, Reading, MA, 1994).
[20] Ebert, C., Dumke, R., Bundschuh, M. and Schmietendorf, A. Best Practices in Software

Measurement. (Springer, Berlin, 2005).
[21] Weyuker, E. Evaluating software complexity measures. IEEE Transactions on Software

Engineering, 1988, 14 (9), 1357-1365.
[22] Gruhn, V. and Laue, R. Complexity Metrics for Business Process Models. 9th International

Conference on Business Information Systems (GI, Klagenfurt, Austria, 2006).
[23] Cardoso, J. Control-flow Complexity Measurement of Processes and Weyuker’s Properties. 6th

International Enformatika Conference, pp. 213-218 (International Academy of Sciences,

6-41

6-42 ICED'09
ICED’09/381

Budapest, 2005).
[24] Summers, J. and Shah, J. Developing Measures of Complexity for Engineering Design. DETC’03

ASME 2003 Design Engineering Technical Conferences and Computers and Information in
Engineering Conference (ASME, Chicago, IL, 2003).

[25] Schlick, C.M., Duckwitz, S., Gärtner, T. and Schmidt, T. A Complexity Measure for Concurrent
Engineering Projects Based on the DSM. In Kreimeyer, M., Lindemann, U. and Danilovic, M.,
eds. 10th International DSM Conference (Hanser, Stockholm, 2008).

[26] Kreimeyer, M., König, C. and Braun, T. Structural Metrics to Assess Processes. In Kreimeyer,
M., Lindemann, U. and Danilovic, M., eds. 10th International DSM Conference, p. 245-258
(Hansa, Stockholm, 2008).

[27] Henry, S., Kafura, D. and Harris, K. On the Relationships among three Software Metrics. 1981
ACM Workshop/Symposium on Measurement and Evaluation of Software Quality, p. 81-88
University of Maryland, 1981.

[28] Shao, J. and Wang, Y. A New Measure of Software Complexity based on Cognitive Weights.
(IEEE Canadian Conference On Electrical And Computer Engineering, p. 1333-1338 2003).

[29] Kuratowski, C. Sur le problème des courbes gauches en topologie. 1930.
[30] John, H. and Robert, T. Efficient Planarity Testing. J. ACM, 1974, 21 (4), 549-568.
[31] Booth, K.S. and Lueker, G.S. Testing for the consecutive ones property, interval graphs, and

graph planarity using PQ-tree algorithm. Journal of Computational Systems Science, 1976, 335-
379.

[32] Shih, W.K. and Hsu, W.L. A new planarity test. Theoretical Computer Science, 1999, 223.
[33] Boyer, J.M. and Myrvold, W.J. On the Cutting Edge: Simplified O(n) Planarity by Edge

Addition. Journal of Graph Algorithms and Applications, 2004, 8, 241–273.
[34] Chiba, T., Nishioka, I. and Shirakawa, I. An Algorithm of Maximal Planarization of Graphs.

IEEE Syrup. on Circuits and Systems, p. 649-652, 1979).
[35] Cardoso, J. How to Measure the Control-flow Complexity of Web Processes and Workflows. In

Fischer, L., ed. The Workflow Handbook, pp. 199-212 (Future Strategies Inc., Lighthouse Point,
FL, 2005).

Contact: S. Kortler
Institute of Product Development, Technische Universität München
Boltzmannstr. 15
85748 Garching
Germany
Phone +49.89.28915153
Fax +49.89.28915144
E-mail sebastian.kortler@pe.mw.tum.de

Sebastian Kortler is a scientific assistant at the Institute of Product Development at the Technische
Universität München, Germany since 2008. Before, he studied computer science until 2007. Currently,
his research is focused on structural complexity and the development of structural characteristics that
govern complex systems.

Matthias Kreimeyer is a scientific assistant at the Institute of Product Development at the Technische
Universität München, Germany. His research is focused on structural complexity and the management
of engineering design processes; as part of his work, he is co-chair of the Special Interest Group
“Managing Structural Complexity” and has organized the DSM Conference since 2007.

Udo Lindemann is a full professor at the Technische Universität München, Germany, and has been
the head of the Institute of Product Development since 1995, having published several books and
papers on engineering design. He is committed in multiple institutions, among others as president of
the Design Society and as an active member of the German Academy of Science and Engineering.

6-42

