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ABSTRACT

An ontological representation of product-service systems (PSS) is presented, which could support the
development of new computer-aided tools and frameworks for PSS design. In this ontology, a PSS
consists of values, product and service elements, and their relations. PSS and its product and service
elements are further specified by attributes of function, behavior, structure, context, and environment.
This paper further describes an ontological representation of the mappings between values, functions,
and structures. This is developed as an ontology of generic decomposition knowledge, which can
express an abstraction/realization hierarchy across multiple levels of abstraction, in which an element
at a higher level (more abstract) is mapped to one or more sets of elements at a lower level (more
detailed). The same ontology is also applied to represent multiple levels of abstraction in a function
decomposition of products within a PSS.
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1 INTRODUCTION

Product-service systems (PSS) provide a means of innovative value proposition through the
integration of products and services [1]. PSS is part of an ongoing trend away from a solely product
design-oriented focus, to embrace the entire lifecycle of products, and to explicitly design and manage
new service applications such as maintenance and rental that are enabled by having these products, to
create new business opportunities and/or reduce environmental costs. In this way, manufacturers are
evolving into service providers. Baines et al. review research in developing the tools and
methodologies for effective development of PSS [2]. Goedkoop et al. define PSS as “a marketable set
of products and services, jointly capable of fulfilling a client's need” [3], while Mont defines PSS as “a
system of products, services, supporting networks, and infrastructure that is designed to be
competitive, to satisfy customer needs, and to have a lower environmental impact than traditional
business models” [4][5].

While PSS is currently an active research topic, smart tools to support PSS design (e.g. comparable to
existing CAD systems for product design) have yet to mature. An overall goal of this research is to
develop a formal, ontological representation of a PSS, and of the PSS design process itself, which
would be a foundation for a PSS design tool. Ontology is an emerging semantic technology for
computer-understandable representations of the entities, relations, and constraints in a domain [6]. We
use standard ontology tools, including OWL ontology language [6] and Protégé ontology editor [7].

In designing a product or service, it is crucial to anticipate the needs of customers and other
stakeholders. In PSS research, stakeholders’ needs are identified, and are represented as values.
While value in the economic sense is “the market worth or estimated worth of products or services”
[8], each individual value in PSS design is generally a concise term or phrase that defines a specific,
measurable aspect of a product or service that has “economic value” to a stakeholder. Shimomura et
al. introduce the service model in service engineering, and propose receiver state parameters (RSP) as
a quantitative implementation of values [9][10][11][12][13]. They use Kahle’s List of Values [14] as
the highest abstraction of receiver values, and decompose these values hierarchically to obtain RSPs.
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Maussang et al. present a PSS design process that incorporates Shimomura’s service model with an
engineering product design process, considering functional analysis and agent-based value design, in
which values are deduced from the needs of stakeholders [15]. Using this, they develop a PSS for the
Vélo’v self-service bicycle rental system, incorporating bicycles, stations with locking facilities, rental
services, and maintenance operations.

The rest of this paper is organized as follows. Section 2 summarizes our ontological representation of
PSS. Section 3 discusses an abstraction/realization hierarchy between the three levels of value,
function, and structure, and reviews existing research in function decomposition and related
approaches in product design. It presents a generic ontology of mapping between two sets of
elements, and discusses how it is merged with the PSS ontology. Section4 elaborates on the
representation of function in PSS. Section 5 shows an example of a function decomposition, and its
implementation using our generic mapping ontology.

2 ONTOLOGICAL REPRESENTATION OF PSS

In parallel with the current research, we are also developing an approach for the conceptual design of
PSS, based on established product design methodologies and a wide literature review of PSS design
research. A case scenario of this approach to develop a PSS for a meal assembly kitchen has been
presented in [16]. From that scenario, we have identified the elements of a PSS representation, using a
simple graph representation. We formalize this representation as an ontology of a PSS, which
describes values, product elements, and service elements, and their relations, as shown in Figure 1.
We use OWL and Protégé for ontology modeling, with UML for presentation.
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Figure 1. Ontological Representation of Value and PSS

8-360 ICED'09



2.1 Representation of Value

While values have been proposed in numerous design methodologies for service [9]-[13] and PSS
[15], existing descriptions of values are ad hoc, using natural language phrases. The current work
pursues a formal ontological representation of value. By generalizing from numerous examples of
values in the cited literature, and those we developed for our case scenario in [16], we have developed
an initial representation of a Value class, shown on the left side of Figure 1. Its constituents are:

e one ValueNature object that describes what the value is;

o multiple ValueRealizations that represent different subjective interpretations of this value.

Each ValueRealization consists of:

e an [ActorGroup for a subset of stakeholders that are characterized by some shared attributes;
e a ValueParameter that records a measurement of a property of this actor group;

o an IValuation that maps the value parameter to these actors’ “degree of satisfaction”.

The Distribution subclass is one kind of valuation, which requires that its state parameter be
quantitative, and defines a mathematical function from parameter values to “degree of satisfaction”.

2.2 Representation of PSS

The ontological model of PSS is shown in Figure 1, upper right. A PSS is represented as a class
which aggregates three constituent classes, representing a set of Values, a set of PSElements, and a
set of Relations of this PSS. Furthermore, PSS uses a notion of an abstract base class that includes
function, behavior, structure, context, and environment attributes, which is named FBSCE. PSS also
has a subPSSs relation to 0 or more other PSSs, which allows a PSS to be composed from sub-PSSs in
a recursive manner.

The PSElement class is an abstract base class, whose subclasses represent the elements of a PSS. It
conveniently extracts common operations from its subclasses, which simplifies numerous algorithms.
PSElement also inherits function, behavior, structure, context, and environment attributes from the
FBSCE base class.

e PElement (product element) describes a product design.

o SElement (service element) describes a service, including its provider and receiver roles.

Values are associated with product elements, service elements, and PSSs. To ensure a consistent
interface, we define an abstract interface /HasValues, which carries a hasValues property to 0 or more
Value objects. We then add /HasValues as an additional base class of both PSS and PSElement
classes, using multiple inheritance.

Relation represents a relation between two elements, or between a value and an element. We define
three specific subclasses, in order to exploit exact type information in modeling these subclasses,
respectively:

e PVRelation between a product element and a value;

e SVRelation between a service element and a value;

e PSRelation between a product element and a service element.

3 REPRESENTATION OF VALUE - FUNCTION - STRUCTURE

3.1 Function Decomposition

Function decomposition is an established technique in product design and service engineering
research; hence it could be incorporated as a cornerstone of PSS representation. In function-based
design, the overall functions of a product are recursively decomposed into sub-functions, where all
functions have input and output in the forms of energy, material, or signal [17]. Standardized sets of
function and flow (energy, material, signal) classes have been established for products [18][19].

Function decomposition has been incorporated into more comprehensive design frameworks,
including Function-Behavior-Structure (FBS) [20], Function-Behavior-State [21], and Function and
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Behavior Representation Language (FBRL) [22]. These frameworks introduce a multi-level
representation, where each level represents a product (or service) at a certain level of abstraction, and
mappings between elements of different levels denote relationships such as abstraction/refinement,
realization-of, ways-of-achieving [22], etc. In these frameworks, function represents the designer’s
intent, behavior is a realization of function using purely objective descriptions, and structure is a
realization of behavior using concepts, physical components, and other product elements. Camelo et
al. proposes a similar representation with 4 levels, with purpose function for the designer’s intent,
action function as an abstraction of behavior, behavior as an abstraction of physical state, and
structure as an abstraction of geometry [23], where their is-abstraction-of (downward) relationship
could be viewed as the inverse of the is-realization-of (upward) relationship. Such multi-level
representations have been found to be useful in organizing design knowledge [24].

3.2 Representation of Multiple Levels of Abstraction

This paper focuses on representing the interrelations between value, function, and structure elements,
organized into three layers, as shown in Figure 2. To extend the FBS-like design frameworks to
accommodate PSS, value is added as the topmost level of abstraction. As values are deduced from the
needs of stakeholders [15], it could be viewed that “value is the stakeholder’s goal”, and “function is a
realization of the value” (by the designer, for the stakeholder). For this discussion, beiavior has been
abstracted away, and structure is considered to be “a realization of the function”.

Value

Function

Structure

Figure 2. Mappings between Value, Function, and Structure Levels

An example of this multi-level abstraction hierarchy is given in Figure 3. In this example, value v1 is
realized by a set of two functions { f2, f3 }. Function f3 can be realized in two alternative ways: by
service { s9 } alone, or by the set of { product p5, service s6 }.

Structure

Figure 3. Example of Value-Function-Structure Hierarchy

Hence, the interrelations between elements in two levels of abstraction can include both one-to-one
and one-to-many relations (and, by generalization, many-to-many relations). Also, a mechanism is
needed to organize sets of interrelations, and express set-level operations such as alternatives (OR).

From these criteria, we have implemented a generic ontology of a Mapping, shown in Figure 4, which
can model a set of connections between two sets of elements. To support diverse interpretations of the
connections in a mapping, the role of each connection is defined separately, as an enumeration class,
shown in Figure 4, lower right, in yellow.
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Figure 4. Generic Representation of Mappings as Connections between Elements

The Mappable abstract base class (lower left, in white) denotes the capability of participating in a
mapping, i.e. of being an endpoint of a connection. To merge this ontology with the PSS
ontology, Mappable is added as an additional base class of the PSS ontology classes Value and
PSElement (in Figure 1), and Flow and Function (which are further described in Section 4).

The MappableGroup helper class (lower right, in white) represents a set of 2+ mappable
elements. Example: The subsets {2, {3} and {p5, s6} are implemented as instances of this class.

The Mapltem class (center, green) represents one generalized edge, i.e. one connection between
2+ elements. It defines 4 subclasses to explicitly represent the cardinality of elements at each end.

o Mapltemll is a 1-to-1 connection (simple edge). Example: The f3—s9 relation is
implemented as an instance of this subclass.

o MapltemlN is a 1-to-many connection (hyperedge). This describes the case where
one higher-level element is mapped to a set of N lower-level elements. Example: The
v1-{f2, 3} and f3—{p5, s6} relations are instances of this subclass.

o MapltemM1 is a many-to-1 connection.

o MapltemMN is a many-to-many connection.

To express sets of relations, and set-level operations such as alternatives, an AND/OR tree structure is
incorporated into this ontology (upper right, in magenta).

The MaplItemNode abstract base class represents an AND/OR subtree of generalized edges.
The Mapltem class, which represents one generalized edge as described above, is also defined as
a leaf (bottommost) node in the AND/OR tree structure. Hence, the simplest AND/OR tree would
consist of just 1 Mapltem edge, with no siblings and no children.
The MapltemList subclass represents a set of 1+ MapltemNode child nodes, in a recursive
manner. This produces a tree structure whose leaf nodes are all MapItems. Two subclasses are
defined to represent the semantics of set-level operations:
o MapltemList-AND means the union of its child nodes.
o MapltemList-OR means that, of its list of child nodes, exactly one shall be selected,
and all others are excluded. Example: The OR-operation between the f3—{p5, s6} and
f3—s9 relations is implemented as an instance of this subclass.

Finally, the Mapping class (top left, in white) consists of a set of MapltemNodes. This encompasses
everything from 1 simple edge to a rich set of AND/OR trees of hyperedges. Example: The mapping
shown in Figure 3 is implemented as a Mapping instance with two child nodes: (1) a Mapltem1N
instance for the v1—{f2, 3} relations shown in magenta, and (2) a MaplItemList-OR instance for the
blue relations involving {3, as described above. Note that the top-down organization in the abstraction
hierarchy is flattened into sibling nodes in the AND/OR tree structure.

ICED'09 8-363



3.3 Implementation Issues

Every Mapltem is defined to point to 2 or more Mappable elements. To simplify data structure
traversal algorithms, it is desirable to maintain a doubly-linked data structure. Hence, every Mappable
element shall also point back to all Mapltems in which it participates. This requires computational
support to ensure that all Mappable and Mapltem pairs remain properly doubly-linked. Such an
approach is already widely used, e.g. in maintaining a boundary representation in a solid model, so it
is expected to be straightforward.

While computational efficiency issues are not a primary concern so far, efficiency could be improved
by defining many parallel sets of subclasses of the MaplItem class hierarchy, each of which makes a
commitment to a specific level of abstraction, or to a specific subtype of Mappable. For example, a
hypothetical VFItem subclass of Mapltem could restrict its from and fo property ranges to be Value
and Function, respectively. This makes the ontology more precise, at the cost of a proliferation of
subclasses. It presumes that the modeling formalism permits a subclass to restrict the range of an
inherited property. OWL restrictions can express this, but most object-oriented languages (including
Java and Jess) lack a similar mechanism.

4 FLOW, FUNCTION, AND FUNCTION DECOMPOSITION

Function decomposition also uses multiple levels of abstraction internally. In function-based design, a
function is a transformation from input flows to output flows, where a flow is an energy, material, or
signal [19][25]. By applying function decomposition, function chains are created for each input flow,
and these function chains are aggregated, obtaining a function decomposition at a lower (more
detailed) level of abstraction.

This approach is illustrated using the function decomposition of a take-out (disposable) coffee cup,
which is being developed in a case study of a PSS for recycling coffee cups. This example focuses on
one function of the disposable cup.
e At Level 1, shown in Figure 5 (top), the overall function is summarized as “store coffee for
human drinking”, and its input and output flows are identified.
e At Level 2, shown in Figure 5 (bottom), the overall function has been decomposed into five sub-
functions, and the input and output flows have been distributed accordingly.

Level 1 (Black Box)

store coffee

(Take-out Cup)
|;up empty:'i SR ->|;upempty

L - =]
T e - | | T e .
coffee [ coffee cnffee cuffee
7 [(rana ]

I I
1 1._ . |human
Sl force

Level 2 (Detailed)

Figure 5. Function Decomposition with 2 Levels of Abstraction

Each flow is described in a compact and qualitative manner, i.e. all issues of quantization are
abstracted away. From the signal flow instances of “empty” and “full”, a notion of state changes of
Sflows could be inferred as a result of the operation of the functions. However, state changes have not
been fully incorporated into function-based design, and it could also be interpreted that “empty” and
“full” are two distinct signals, not two states of one container product.
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4.1 Representation of Flow

By drawing from established definitions in function-based design, and surveying recent literature in
service functions used in service engineering, we have devised an ontological representation of flow
and function, shown in Figure 6. A key concern in building this ontology was how to adequately
model the instances of flows that appear as labels throughout each function decomposition. Each flow
label represents a specific unit or quantity of a resource, with state, magnitude (if applicable), and
other attributes; but at the high level of abstraction of function decomposition, most of these details are
deliberately omitted, and only the #ype of the flow is stated. However, the ontological representation
cannot be restricted to a high level of abstraction only. Hence, a mechanism is needed to allow a more
abstract representation now, yet also support progressively more detailed representations in the future.

«metaclass»

MetaFlow |/ Flow
+type +type
+magnitude N\ in_M

L1 in_Eb Function out_E

i out_S -
Signal in_S ﬂ = Signal

Flow_t

+state

7N

Flow_q

+magnitude

Figure 6. Ontological Representation of Flow and Function

The adopted solution is to use OWL metamodeling to support alternative Flow class hierarchies. The
MetaFlow metaclass (upper left) specifies that attributes of type, magnitude, and state shall exist, but
without committing to any specific implementation. Each instance of MetaFlow is a Flow class and
its class hierarchy, which may implement these attributes differently among its subclasses.

One concrete Flow class hierarchy is then instantiated as shown:
e The Flow base class implements only the #ype attribute.
o Its three subclasses of Material, Energy, and Signal each restrict the #ype attribute.
e The Flow_t subclass also implements the state attribute. This permits a richer description in
which state changes of flows could be expressed.
e The Flow_q subclass also implements the magnitude attribute.

Function decomposition activities could initially use the Material, Energy, and Signal subclasses of
Flow only. When detailed (quantitative) modeling is needed at a later stage, an ontology-aware PSS
design tool could automatically upgrade instances of these classes to instances of the Flow_t or
Flow_q subclasses to gain access to their additional attributes.

4.2 Representation of Function and Instantiation of a Function Decomposition

The Function base class is defined with six properties in_{E,M,S} and out {E,M,S}, which represent
any number of input and output Energy, Material, and Signal flows, respectively (including 0). This
representation is illustrated by instantiating the Level 2 function decomposition for the “store coffee
for drinking” example in Figure 5. The resulting ontology model is shown in Figure 7.

This example reveals an issue during the instantiation of the flow instances. In function
decomposition, flow labels are not unique, and the same flow label may occur many times, without
implying equivalence. In OWL, all individuals of the same class must have unique identifiers — and
this applies to the flow individuals. The Protégé ontology editor uses a simple policy of automatically
appending a numeric suffix that increases monotonically, which ensures uniqueness.
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Figure 7. Instantiated Ontology Model of the Level 2 Function Decomposition

following approaches to address this issue were considered.

Random suffixes. Simple numeric suffixes could be misinterpreted as a kind of state
information. This could be alleviated by adopting a policy of generating random suffix strings.
Shared flow individuals. The need for numeric suffixes could be eliminated by instantiating only
one Flow individual for each unique flow label, and sharing it among all Functions that include
that flow label as an input or output. To preserve all knowledge of specific output-to-input pairs, a
Pair helper class could be added that explicitly represents one output-to-input pair, and also
references the Flow individual, as shown in Figure 8. However, this approach assumes that flow
labels are entirely stateless, and that no loss of design intent occurs by merging identical labels.
Explicit state. If, on the other hand, flow labels are intended to denote distinct states, and their
apparent sameness is only an artifact of the high level of abstraction employed during function
decomposition, then it may be desirable to instantiate them distinctly in OWL, and assign unique
names. We could furthermore use a richer subclass such as Flow_t that provides additional
attributes such as state, and rely on the design tool to automatically suppress them when the
designer wishes to revert to a higher level of abstraction.

Figure 8. Shared Flow Individuals with Pair Helper Class

APPLICATION TO MULTIPLE LEVELS IN A FUNCTION DECOMPOSITION

In this section, the Mapping ontology of Section 3.2 is combined with the representation of Flow and
Function in Section 4, and used to instantiate the 2-level function decomposition of the “store coffee
for human drinking” example. The instantiated ontology model is shown in Figure 9.

8-366

The single function at decomposition level 1 is mapped to a set of 5 sub-functions at level 2, using
a MaplItem1N. Since this is a downward mapping, its role is assigned the value ‘realizedBy’.

The input and output flows themselves are also identified as Mappable clements, and are
associated via Mapltem11 individuals labeled el to e8. Note that these input and output flows
actually denote the same things in levels 1 and 2 — they are neither realizations nor abstractions of
each other. They are assigned the role of ‘sameAs’.

The mapping Mapping_0 from Level 1 to Level 2 then consists of these 9 Mapltems. For clarity,
its hasNodes properties are implicitly shown as the light blue region, rather than drawing 9 edges.
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Figure 9. Mapping between Two Levels of Abstraction in a Function Decomposition

6 CONCLUSIONS AND FUTURE WORK

An ontology of PSS has been presented, with further elaboration on (1) the ontological representation
of flow and functions, and (2) an ontology of mappings between two sets of elements. This
representation of mappings has been applied between the three levels of values, functions, and
structures, as well as between two levels of abstraction in a function decomposition.

Overall, the development of a comprehensive PSS ontology is a first step toward the eventual
implementation of smart PSS design tools. The current PSS ontology is not intended to be directly
used by human designers. But by incorporating established design methods such as function
decomposition, it would support designers in using techniques and representations that are already
familiar to them. And by building in the support for multiple levels of abstraction, this ontology could
allow new perspectives of PSS designs to be visualized, e.g. to seamlessly go from a highly abstract
(qualitative) view to a highly detailed (quantitative) view, and back, according to the designer’s need.

Within a single level of abstraction, products could be decomposed into features and components,
organized into a graph structure by connectivity and other relations [26][27]. We anticipate a need for
a generic representation of decomposition knowledge, representing structural decomposition of an
aggregate into its constituents, i.e. where the edges could include part-of relations. By defining a part-
of role, we could extend our representation of mapping to also handle the decomposition of aggregates
into constituents. This approach of extracting an ontological representation of generic decomposition
knowledge, and reusing it across many domains, has also been used in Function and Behavior
Representation Language (FBRL) [22].

In FBRL, the representation of flows (which are called operands) is extended with an explicit state
parameter [22]. Recent research has explored the integration of function decomposition with notions
of state and process [25]. We will extend our ontological representation to incorporate state and state
change, as well as actors, and use these to extend our representation of function to encompass
functions of services.
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