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Product portfolio optimization is the problem of providing the widest variety of functions while minimizing
the product variety. Here we propose a novel approach based on functionality modeling for the product family,
which can suggest portfolio decisions, building on significant dimensionality reductions in product variability.
Function is modeled as a set of performance metrics reflecting the degree to which various user expectations are
satisfied. If product variant A is better than (dominates) B on all counts, then A would be preferred; this implies
that user preferences would lie among the “non-dominated” set of designs. Using a suitable multi-objective
optimization algorithm, one may estimate this non-dominated set of designs, which restricts designs to a
much lower-dimensional manifold in the function space. This non-dominated set which can then be clustered
in an unsupervised manner, resulting in a candidate product groupings which the design team may inspect
before arriving at a portfolio decision. We demonstrate the process on simple product platforms (faucets), in
two scenarios: a) as an integral design, with continuous design variables, and b) as a 2-component design in
which one component is available in several standard sizes. The effect of numerical stability in the process is
investigated in empirically, and the conditions under which the results would scale to large dimensional spaces
are also explored.

Keywords: Product Portfolio Optimization, Unsupervised Learning, Standardization.

1. FUNCTION IN PORTFOLIO PLANNING
Product portfolio selection is a key question facing the firm as it goes from design to manufacture —
which of the products in a given line or product family should be the focus of manufacturing and
marketing efforts? Arriving at a good portfolio, either in terms of a few standardized parts (integral
design), or a few modular components,22 leads to reduced inventory and efficient service, and crucially
impinges on profitability. This problem has attracted growing attention in recent years,12 and there has
been considerable emphasis on minimizing the product variety, especially in terms of finding better
commonality measures. In contrast, not much work has looked at function, partly due to the difficulty
of modeling it. In this work, we assume that to a degree, some quantifiable models of performance may
become available at late stages of conceptual design, and we show how these measures may be used to
obtain a function space, which can lead to a simple algorithm for portfolio selection, with significant
reductions in the dimensionality of the search space.

Here we take product family to be a set of products that serve a related set of market applications —
they are similar in form and function, and share a common technology base, and may lead to similar
processes for life-cycle design10,11,16 (see Ref. 20 for a recent review). Given a product family, we take
design space to refer to the common set of design variables within which the different product variants
may be instantiated. This design space, especially for modular designs, is sometimes referred to as
the product platform. Arriving at such a platform, especially for complex parts with many functional
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components, is a complex task, but for the purposes of this work, we assume that this is now available.
There are two aspects of product portfolio selection. The first is to maximize the commonality between
the parts, metrics for which have been the focus of a large body of work.1,12,19,23 A second and
relatively less modeled aspect is to consider the functional diversity among the objects. While work on
part families have considered performance requirements to various degrees,4,17,21 and other aspects
such as manufacturing process design,8 it has proved challenging to apply these ideas to portfolio
standardization.

In this paper, we start with the assumption that by late stages of conceptual design, the functional
requirements are sufficiently understood that they may be expressed in terms of quantifiable metrics.
In order to validate these performance measures, clearly a considerable amount of prototyping, user
validation and other measures would need to be taken. Also, over the lifetime of the product, the
degree to which these functions reflect actual performance keeps improving. Also, new functions may
be added, resulting in different product groups forking off based on these differences.3 However, for
the purposes of this work, we simply assume that some reasonable estimates are available. Now we
can then identify certain user preferences as inferior if they are poorer in all the functional measures.
Given a set of k performance criteria f1, f2, …, fk, We say that product variant A dominates variant
B if the fi(A) is superior to fi(B) for all k performance metrics. Then, we may assume that user
preferences would lie among the designs which constitute the non-dominated set, which amounts to a
vast pruning of the design space. Finally, we show how given this non-domination set, one may define
product similarity metrics, which can be used for clustering the parts in an unsupervised manner. These
similarity measures may be defined on the design space variables, functional aspects, and also other
measures of commonality proposed in the literature.1,14 This results in product groupings in the design
space, each of which reflects product similarity (in terms of design space as well as function). The
design team may then consider these groupings as candidate product classes, each of which may be
represented by a single exemplar or product variant, the set of which would constitute the product
portfolio.

One of the challenges of portfolio optimization is that the search space is very large, a consequence of
the high dimensionality (the number of parameters N) in the design space. For example, for a product
such as a mobile phone, N may be about 50. Of these, about 20 may be discrete, say with 4 levels
each, and 30 may be continuous (at least 10 values each, say). Then the search space is O(1042), which
is simply too unmanageable. The first advantage of this approach is that it dramatically reduces the
dimensionality of the search space; this is because the designs are limited to those in the non-dominated
front, which is a surface in the space of functional measures. If there are k function measures (usually
k� N) then the feasible set of designs lie on a k−1-manifold, which is a dramatic reduction in the
search space dimensionality. For discrete variables, the designs may lie on some bands in this manifold,
further reducing variability.

Another important advantage is that it is computable entirely in simulation, and does not require the
market data commonly assumed by product portfolio design tasks.2,9 Indeed, obtaining such market
data would require some initial manufacturing, which would already tie in some of the design decisions,
and result in potentially significant opportunity loss.18 Part of the reason that firms are unable to forego
such risks is the forbidding nature of the search space outlined above.

The process outlined here is based on a view of design which considers the design process in terms
of the design space (or product platform) D, the actual design variants or structures S, their set of
behaviours B, on which are defined a set of performance measures P. This DSBP model is defined in
Section 2. Once the Performance measures are available, we may use any Multi-Objective optimization
technique (we use NSGAII,5 a well known evolutionary algorithm), to estimate the non-domination
front (Section 3.1). Finally, the instances found in the non-domination front can be clustered using any
unsupervised classification algorithm (k-windows, dbscan, neural gas); we use a variant of neural gas
called Growing Neural Gas.
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2. MODELING FUNCTION
Our design process (Figure 1) involves a cycle through Design — Structure — Behaviour and Perfor-
mance (D-S-B-P). The Design space D is the space of all design variables (each design is a unique
design vector), and initial constraints imposed as part of the design specifications. The Structural space
S is the space of the parameters needed to completely define the geometric and material structure; there
is an one-to-one mapping from the design vector v, to the structural vector. Given the structure, a large
set of behaviours B are possible, of which only a few, the performative behaviours BP, are of interest
for functional purposes. Finally, a set of metrics maps the behaviours in BP, to an evaluation space P,
where the performance metrics (pj, j=1 … k) are orthogonal to each other. The results of evaluation
are then used to search in design space and come up with an improved design in D.4

3. EXAMPLE: WATER FAUCET
As an example task, we now take up the detailed design of a basin faucet modeled using simple
geometric elements for the inlet, outlet and knob. Each of these design elements has a set of driving
geometric parameters; in terms of which all other shape parameters as well as joining constraints can
be defined. Also the design space for overall product family may have up to 20 parameters, in the
analysis below, we restrict the driving parameters to three for the ease of demonstration in this paper.

In this work, we consider two different types of product family. One is integral — i.e. all the shape
parameters are continuous and constitute a single design space. in the second model, the product is
modular, and two of the components (the knob/inlet) are available in three standardized sizes, 8, 9, and
11 cms. We show how the same process can be used in both these situations. Even when the design
space is discrete (modular), the clusters need not follow this discrete variation, it may cut through the
design space in other ways as well.

3.1. Estimating the Non-Dominated Front
Design is a search process. During this process designers tries to find optimum solutions through
searching the design space. The member of the part family is characterized by a set of design variables.
In which we focus on a 5-tuple design vector w, L, •1 and •2 which we call as driving variables
as the other design dimensions internal to the faucet Figure 2 are defined in terms of these driving
variables. For example, the height (h) of the base is 0.5 L. Given a set of values for a design vector,
one can determine its shape. The optimal solutions can be obtained by modeling the above problem
as a multi-objective optimization problem for searching the design space and we have used NSGA-II
algorithm.5

Figure 1. Design Process: A mapping from design space to structure space and searching the design space based on performance
evaluation of the intended behaviours.
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Figure 2. Complete Faucet with Knob. The driving parameter set {Wo, Ho, Lo, θ1, θ2} And the Knob radius {Rb} is 0.5Wo.

Multi-Objective Optimization

Maximize π1(v) = CdAV , A = wh V =
√

2gHnet
Minimize π2(v) = ρvvol

L2 ,
Subject to g(v) ≡ 55.0 < θ1 < 60.0, 5.0 < w, h < 8.0

20.0 < L < 40.0, 70.0 < θ < 150.0
θ2 = 55.0w−20.0

3.0 θ1 = 0.5L + 40.0
h = w+ 0.5

(1)

Where Hnet = ((H − L cos (θ1)− (0.85h) cos ((θ1 − θ2))−Hf ))

H = 1000 and Hf = 0.8H , Vvol = Vtap

Vtap = Vbody + Vspout + Vmouth Vbody =
πw2

2
h + wh2 Vspout = 0.5w(L2 sin (θ1))

sin (θ0)+ L2 cos (θ0) sin (θ0)+ wL cos (θ0) Vmouth = 0.8h2wsin
(θ2

2

)

3.2. Discovering Product Subcategories
Here we demonstrate the process of obtaining clusters in the design space based on the user preferences
in the form of performance behaviours. With suitable metrics on these performance behaviours and the
search in the design space based on these metrics we can come up with a set of Pareto optimal solutions
in the space high dimensional performance measures. In this paper, we consider performance metrics
(user preferences) to be optimized may be defined over some continuous and discrete variables. For
the faucet, the knob can have discrete radius R values to fit into the inlet of the tap. First, we present
the clusters for continuous variables and then we show the standard parts for the discrete variables.

In order to find out the clusters based on product similarities we use un-supervised learning algorithms
in which the products (design vectors in design space W) can be clustered in an unsupervised manner
based on the notion of distance between products. We use the Growing Neural Gas (GNG) algorithm7

for unsupervised clustering which has been shown well suited for finding clusters.

3.2.1. Product grouping for integral Part families
For the integral faucet part families, the design parameters w, L, and θ2 are continuous and spanning
the design space shown in Figure 3(b). Our interest is to find out the clusters in the design space of the
non-dominated solutions. The Figure 3(a) shows the non-dominated front for bi-objective functions
involving three independent design variables constitutes the design space. With the help of unsupervised
clustering we show the clusters in Figure 3 and also the data distribution in the projected design spaces
w-L, w-θ2 and L-θ2.

In the case of faucets we considered here, each faucet will have knob,inlet and outlet. We can
create different faucets with different types of faucet components. Let us say, for the two components
knob and inlet, if the radius R is available in different standardized sizes 5, 8 and 11 cms, different
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Figure 3. Product groupings for faucet based on non-domination front: The non-dominated solutions (a) are mapped into the
design space (b) where clusters are obtained using unsupeverised clustering. Here three clusters are shown in different colours
for data input of 500. Note that some clusters obtained from the design space overlap along the Pareto front. The large circles
are the nominal cluster centers. 2D Sectional Distributions The projections of clusters are shown in design subspaces (c) (w, L),
(d) (L, θ2), and (e) (w, θ2).

Table 1. Cluster centers for the data
input of 500 and the corresponding
design parameters’ values.

Clusters w L θ2

C1 6.96 37.02 119.71
C2 6.36 36.33 93.2
C3 5.33 28.46 117.9
C4 5.12 28.85 94.98
C5 5.79 36.20 129.43
C6 5.41 33.51 133.63
C7 6.48 32.89 98.18

Figure 4. Faucet Family: Four of the product groups from Table 1, corresponding to the centers of clusters C1, C2, C4, C5.

combinations of faucets can be created for higher variety. When we use unsupervised clustering in the
case of discrete variables, the clustering follow based on discrete variation. Figure 5 shows the design
space with different clusters.

4. SCALABILITY
The approach presented here makes two claims that (a) user preferences can be estimated a priori
given good estimates of product function, and that (b) the non-dominated set of designs results in
significant pruning in the product search space, especially where the dimensionality of the product
design variables N is much higher than the number of distinct functional considerations. Other aspects
of the approach, such as the similarity measure used in unsupervised clustering, remain matters of
detailing, on the whole, if these two assumptions hold, it is likely that the approach presented may
constitute a valuable portfolio optimization tool.
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Figure 5. Design space with different standard sizes of w 5,8 and 11cms. (a) Three clusters are shown in three colors in the
design space w, L and θ2 and the same clusters are shown in the design sub-space w, L.

The approach presented has been validated on a very simple, indeed, toy part family, consisting of
faucets that vary in only three independent dimensions. The question immediately arises as to whether
this technique would be viable for much larger design spaces, for example those involving real products
such as cameras or mobile phones or aero planes, in which tens or even hundreds of components, each
with several dozen design variables, are combined and the final product is evaluated under dozens of
functional considerations.

We now explore these two assumptions for large design spaces. The first assumption, that quantifiable
models of functional performance may be available at the late stages of design, is open to challenge.
First of all, many of these functions may not be available as analytic expressions in the design variables,
but the relationship may be implicit, or available only as a result of simulation, or may even involve
(e.g. in matters such as aesthetics), a degree of subjective judgment. However, designers usually have
some idea of the set of functions they are working with, and arriving at such a set of functions may
not be impossible.

In practice, performance measures improve considerably with increased experience. More signifi-
cantly, new and unanticipated functions arise. Also, the quantity that the functional metrics estimate,
consumer preference, itself changes with increased exposure to the product. Thus, on several fronts,
it is clear that any initial estimate of function is at best a poor approximation. However, having said
this, it remains the best one can do given the available information, and surely it still remains a better
alternative than to actually manufacture some inventory of products based on some uninformed guess,
and use this experience to re-formulate the portfolio.

The second assumption, that restricting our attention to the non-dominated set of designs constitutes
a significant pruning of the design space, requires some exploration. The Design Space W is a finite
set of design variables vi, i=1 … N, and the function space P has a set of performance metrics pj,
j=1 … k. Let us assume that the functions are non-complimentary, so that a non-domination front
exists as a k−1-manifold F in the function space P. Now, restricting our attention to designs in the
non-dominated set implies that p( ∼(v)) 2 F. Clearly, this constitutes an additional restriction on∼(v),
and thus bounds it more tightly than∼(v) 2 W, but we would like to know whether this reduction is
significant.

We observe that the dimensionality of the function space in practice is usually much less than that of
the design space, i.e. k�n. For example, a digital camera (in terms of all its components, and assembly
processes) may have several hundred parameters, but only about ten functional measures. Thus, on the
face of it, the design seems to be constrained to a much lower dimensional manifold. However, this
explanation is naive, for the functional measures, fj(∼(v)), as pointed out earlier, may be non-analytic,
complex and nonlinear.

To consider a particular case in detail, let us assume that the variables are continuous, and that an
explicit formulation of function is available. Then we may evaluate the variability of ∼(v) in terms of
the variability in∼(f) by considering the Jacobian J. If J is close to being singular (i.e. its rank is close
to zero), then designs that are very similar in function (low Ñ∼(f )) may arise from design variables
that are conspicuously different. In this situation, designs within a lower-dimensional manifold in
the function space may cover a large swath of the design space. If the Jacobian is not ill-posed, the
assumption is likely to hold.
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For most design tasks, if a small change in the design parameters results in very large changes in
function, such designs would consider unstable. However, whether the inverse holds — where very
widely differing designs result in similar functions may not be well known. However, considering that
there is more than one functional measure, it is unlikely that all of these would coincide for widely
varying design parameters. Thus, on the face of it, it is likely that most such jacobians would be
well-posed, and hence the non-dominated set would occupy, especially for high N, a relatively sparse
region in the design space.

The computational aspect of scalability cannot be assessed at this point, since neither the nature of the
performance metrics nor the process of non-linear optimization can be precisely characterized in terms
of any measure of problem size. While it may happen that some of the functions involved may involve
considerable complexity, it is unlikely that other approaches would improve on this one because of the
dramatic pruning in the design space achieved by restricting our focus on the non-dominated set.

5. CONCLUSION
In this work, we have presented an approach to the determination of product portfolio’s based on
function. We have assumed that some quantifiable estimate of the user’s preference is available, and
shown that the resulting non-dominated set usually occupies a relatively sparse region in the design
space. We have outlined a computational procedure for obtaining clusters in product space by focusing
only on the non-dominated set of designs. These clusters may serve as candidate groups, which can
be used to obtain a product portfolio.

As a test case, we have considered both integral designs with continuous variables, and also modular
designs with some discrete variables, and shown that the same approach works in both situations.
We have also presented an empirical demonstration, by choosing differing data densities in the non-
domination front, that the results may be relatively stable against numerical variation. However, much
work remains in this area, of discrete choices, and component-based modularity. Although the demon-
stration was on a very simple problem, we have argued that the process is likely to be scalable. However,
what the limits are, and the extent to which the process can be applied on real design situations will
only be known with time.
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