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Abstract 

During the last decades, the aerospace industry has been interested in converting some of its 

production from traditional manufacturing to metal additive manufacturing. This technology is 

attractive to the aerospace industry due to the low production volumes and the need to minimize 

product mass that characterize the industry. The transition from traditional to additive 

manufacturing technologies requires designers to take heed of a new set of design and 

manufacturing constraints. A well-known limitation for the implementation of additive 

manufacturing is the need for support structures which increase material consumption and post 

processing time. The research presented in this paper suggests a novel algorithm for 

automatically altering the geometry of the product to reduce the need for support structures. 

The algorithm operates directly on the vertices of the 3D mesh by relocating them to mitigate 

overhang issues. A proof of concept in the form of a software prototype was developed using 

the Python programming language to demonstrate the algorithm, and how it can be applied to 

3D models. The prototype software utilizes a 3D STL-file as input, and it outputs an altered file 

of the same format. In the process of developing the software prototype some issues surfaced, 

the most prominent of which was the inability of the algorithm to handle overhangs parallel to 

the substrate of the powder bed printer. Such overhangs are also referred to as 0°-overhangs 

due to their normal vector being parallel to the z-axis, thus resulting in an overhang of 0°. Aside 

from that the algorithm also struggled with models of high complexity, which in some cases 

resulted in invalid or malformed STL geometries. The research conducted for this paper 

indicates that further research and development is required. Future research concerning 

automatic geometry alteration should focus on how to deal with the 0°-overhangs. It should 

also involve investigating the possibility to alter the geometry of CAD-models instead of STL-

files, as CAD-models can contain more information, such as constraints. Information of that 

nature could enable the algorithm to take customer requirements into consideration as it alters 

the geometry, thus improving its ability to maintain product functionality. 
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1 Introduction 

It is a common practice in the space industry to implement casting for manufacturing of metal 

components, which has many downsides. The casting process is often characterized by long 

lead-times and is suited for high volume production. These properties have proven 

disadvantageous to the space industry which typically is characterized by low production 

volumes (Dordlofva, Lindwall, Törlind, & others, 2016). Lately there has been an increase in 

demand of space products due to the advent of new actors competing for market shares. 

Consequently, there is a need to decrease cost and time to market for space products while 

proposing innovative, high-performance new designs (Öhrwall Rönnbäck, Isaksson, & others, 

2018). 

In this regard, additive manufacturing (AM) may provide significant benefits to the 

space industry. Embracing such a manufacturing strategy has the potential to reduce lead-times 

and overhead costs. This frees up resources and time that could be used for prototyping, 

increasing the likelihood of innovation (Lindwall, Dordlofva, Öhrwall Rönnbäck, & others, 

2017). Another noteworthy benefit is the potential to reduce component weight, which may 

have especially large impact on more complex parts that are difficult to create using traditional 

manufacturing (Allen, 2006). However, in order to take advantage of any of these benefits 

components need to go through a process of redesign to utilize the inherent properties of AM 

as much as possible (Borgue, Panarotto, Isaksson, & others, 2018). 

Additive manufacturing alleviates some of the constraints of traditional manufacturing, 

however it replaces them with its own set of limitations. Designing with these limitations in 

mind requires designers to embrace a new mindset. However, transforming an existing mindset 

into a new one can be difficult (Borgue, Panarotto, Isaksson, & others, 2018). To tackle this 

challenge there are two generic strategies available: 1) Design new products with AM in mind. 

In other words, maintain a “Design for Additive Manufacturing” approach. Or, 2) do not change 

design methodology. Instead, make products and components compatible with AM during the 

finishing touches. This might include adding support structures or introducing minor changes 

to make a product easier to print (Dordlofva, Lindwall, Törlind, & others, 2016). While the 

second strategy could be more compelling to engineers who lack experience with AM, the first 

strategy will likely generate better results. The problem is that there is often a lack of experience 

and tools to make the latter strategy work (Lindwall, Dordlofva, Öhrwall Rönnbäck, & others, 

2017). 

A common well studied limitation when designing for AM are support structures, the 

purpose of which is to provide support for overhanging structures and supply a path through 

which heat can be dissipated (Cloots, Spierings, & Wegener, 2013). Though support structures 

serve multiple purposes, these structures tend to be superfluous in respect to the desired final 

product geometry and are therefore removed once the component is printed. This is a laborious 

process that is often performed manually (Thomas, 2009)  (Brackett, Ashcroft, & Hague, 2011). 

Moreover, once the support structures are removed, the material from these structures cannot 

easily be reused as it would need to be processed back into powder (Brackett, Ashcroft, & 

Hague, 2011). In this context, a recurrent strategy is to design AM geometries following design 

guidelines to avoid support structures. However, these design guidelines become yet another 

design trade-off that designers must consider while ensuring adequate product functionality. 

Therefore, this study was performed to answer the following research question: 

 

RQ: How can the geometry of a product be automatically altered to reduce the need for 

support structures while maintaining product functionality? 

 



In the research presented in this article, a series of algorithms to attain automatic geometry 

alteration were analysed. The geometry alteration algorithms are intended to be of use in 

conjunction with powder bed fusion 3D printing technology. Using the results of the analysis a 

Python script was developed with the capability of altering STL-model geometries 

automatically. The script was tested using a set of benchmark models and was proven to be 

useful in some situations, although further development is necessary. 

1.1 Background  

To support the design and printing processes, several software tools can be utilized. There are 

tools that attempt to optimize printing orientation of a component to reduce support structures 

and preserve the quality of specific surfaces. Some tools rotate a 3D-representation of the 

product into different orientations and evaluate mathematically which orientation is most 

suitable for AM (Strano, Hao, Everson, & Evans, 2013). Sometimes different orientations are 

given weight based on how suitable they are (Qie, Jing, Lian, Chen, & Liu, 2018).  

Such tools are often used in concert with automatic support structure generation algorithms 

(Leutenecker-Twelsiek, Klahn, & Meboldt, 2016) (Reiner & Lefebvre, 2016) (Vouga, 

Höbinger, Wallner, & Pottmann, 2012). Inserting support structures manually can be a tedious 

and difficult task that likely would lead to waste of materials and suboptimal results. Thus, it is 

often preferable to have a software analyse the product and perform this step automatically  

(Strano, Hao, Everson, & Evans, 2013). There is a vast selection of computer-based tools and 

algorithms for supporting manufacturing processes. However, few of those tools propose an 

automatic modification of a product geometry to make it easier to manufacture with AM and 

require less support structures. Some examples of automatic geometry alteration algorithms are 

the ones proposed by Reiner and Lefebvre (2016) or Vouga et al. (2002)  (Leary, Merli, Torti, 

Mazur, & Brandt, 2014). Learly et al. (2014) and Reiner and Lefebvre (2016) presented studies 

for sculpting approaches for self-supporting structures; Vouga et al. (2002) on the other side, 

proposed an algorithm for designing self-supporting free form shapes. However, most strategies 

require a high level of user input and consume vast computational resources. There is a need 

for non-resource intensive computational algorithms able to perform automatic geometry 

alterations to optimize manufacturing and reduce support structures for AM. 

2 Method 

This project was part of a master thesis, which began with a literature study that was conducted 

by analysing entries from Google Scholar. The publication list was then complemented with 

additional entries through backward snowballing  (Wohlin, 2014) to reach publications outside 

the range of Google Scholar. Besides a literature study, two interviews were held. These 

interviews provided the input of potential end users, as well as compliment the knowledge 

extracted from the literature study. Both interviews were semi-structured in nature. The first 

interview was held with an expert in the subject of metal additive manufacturing, and the second 

with a manager from a company manufacturer of space products. The topics that were discussed 

during the interviews were:  

 

• Quality issues associated with support structures  

• The importance of model orientation 

• Potential expectations from a geometry altering software 

• How geometry alteration could be of use to space manufacturing companies. 

 



The development of the automatic geometry alteration algorithm was divided into two stages. 

The first stage consisted of the development of a problem detection algorithm capable of 

detecting problematic overhang angles and providing information about where in the model 

these problems exists. The second stage was the development of the geometry alteration 

algorithm, which utilizes the problem detection information and attempts to improve the 

product geometry. In both stages the work in progress code was repeatedly tested against the 

benchmark geometries. A sketch of the workflow can be seen in Figure 1. The geometry 

benchmark models were exported to the STL-format. The STL-format was chosen as the 

preferred model format due to its prominent usage in additive manufacturing. Additionally, 

most CAD tools support importing/exporting STL-files. The benchmark models provide a 

variety of challenging features and range in model complexity. These benchmarks assisted in 

finding issues with the explored algorithms, as well as their potential strengths. 

Through brainstorming sessions, a set of algorithm alternatives was developed for both 

the problem detection and the problem correction scripts. When selecting an algorithm for 

problem detection, a thorough evaluation of each algorithm was conducted based on how well 

they performed, how easily the overhang angle threshold could be varied, and by its 

development feasibility. The selection of a geometry alteration algorithm utilized a weighted 

Pugh matrix (Ulrich & Eppinger, 2012). The criteria for the final script (geometry detection and 

geometry alteration algorithm combined) were derived from problems that were uncovered 

during the literature studies. On top of those criteria three others was added: 

 

1. Preserve product functionality after geometry alteration.  

2. The script should be able to be run on an average modern computer  

3. The script should be realizable during the set time of the master thesis (six months) 

 

The programming language of choice was Python 3 due to its associated vast mathematical 

library “Numpy” (NumPy developers, 2020), and its open-source characteristics. An additional 

benefit to using Python was the possibility to pack the entire application (graphical interface 

and scripts) into a single executable program for the Windows platform. 

 

 

 

 

 

Figure 1. Research method. 

3 Results 

3.1 Interviews and literature review 

Support structures are a problem that concerns both manufacturing companies and academics. 

This was apparent both from the literature study (Cloots, Spierings, & Wegener, 2013) and the 

interviews. In the interview with the AM expert it became clear that the tools that already are 

available are not enough. The expert specifically expressed a dissatisfaction with current 

orientation optimization algorithms, as they do not account for how hard the support structures 

will be to remove and might therefor suggest inappropriate orientations. Furthermore, the expert 

noted that it is often favourable to have any necessary support structures attached to flat surfaces 

that are easy to access as this makes the manual removal easier. This is also supported by 

literature (Thomas, 2009) (Brackett, Ashcroft, & Hague, 2011). 
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Company practitioners stated during the interviews that some surfaces should not be allowed 

to be altered, nor be connected to any support structures. This ties together with the criterion 

that the functionality of the final product must remain intact. This is of great importance when 

designing for example an interface surface that needs to fit together with another part. Any 

alteration to such a surface might render the interface incapable. Some surfaces should also 

strictly be avoided when placing support structures. For example, in situations where support 

structures are required in enclosed or hard to reach areas such as the inside of a curved wave 

guide. In such cases it would be preferable if an alternative orientation could be found that does 

not require support structures in delicate locations. This suggests the need for the designer to 

select important surfaces on the 3D-model which under no circumstances are to be touched, 

either by support structures or geometry altering algorithms. These statements are also 

supported by studies (Vayre, Vignat, & Villeneuve, 2012) (Ponche, Kerbrat, Mognol, & 

Hascoet, 2014).   

Using the knowledge obtained from the interviews and the literature study it was possible 

to initiate the development process.  

3.2 Algorithm for problematic geometry detection and alteration 

In total, three algorithms were generated for problem detection, and another three for geometry 

alteration. A sketch for each problem detection algorithm is presented in Figure 2. 

3.2.1 Problematic geometry detection algorithm 

The following algorithms were generated for detecting problems in an STL-model: 

 

1. Voxel parsing: The STL-model is converted to a voxel-format. An algorithm could then 

parse through every voxel and ensure that they are all properly supported. This could be 

done by examining adjacent voxels, ensuring that there is at least one directly or 

diagonally underneath the subject voxel (Guindon, 2017). 

2. Machine learning: A machine learning algorithm could be used to recognize 

problematic areas of a model using an image recognition approach. Several images of 

cross sections from the object could be used (Fakhri, Aurélio, & Farida, 2017). 

3. Normal vector analysis: An STL-model contains all necessary information to calculate 

overhang angles. An algorithm could parse through all faces contained in an STL-file 

and flag faces with problematic overhang angles  (All3DP, 2019). 

 

The algorithms were evaluated in detail. The voxel parsing alternative was tested initially by 

voxelizing different benchmark models. The process of converting STL-files to a voxel matrix 

with an acceptable resolution proved to be a strenuous and time-consuming process for the 

CPU, even for small models. High resolutions are often preferable, but there is a significant 

trade-off between resolution and performance as high-resolution voxel-matrices tend to put a 

lot of strain on both the CPU and system memory (Singer, 2014). Another drawback with voxel 

parsing is that while it is relatively straight-forward to identify 45-degree inclines, it is harder 

and likely more resource-intensive to detect overhangs with angles of variable incline. 

The machine learning approach was dismissed because it is by far the most advanced 

and time-consuming algorithm to develop. To develop a high accuracy image recognition 

algorithm a large dataset is often required, especially if the classification problem is complex 

(Beleites, 2013). No such dataset was available during development, and the creation of such a 

dataset was not possible within the project time frame. 

Finally, the normal vector analysis algorithm was successfully implemented into a 

script. All the necessary information to detect problems using this approach is already integrated 

into the standardized STL-format, and no conversion into voxels or pictures is required. This 



results in the normal vector analysis being a relatively fast method, even for models of high 

complexity. 

3.2.2 Automatic geometry alteration algorithm 

Geometry alteration algorithms need to be built upon a problem detection approach. However, 

the different problem detection alternatives have different types of outputs. The voxel parsing 

script outputs references to unsupported voxel positions, and the normal vector analysis outputs 

references to STL-format faces that possess problematic overhang angles. These two different 

kinds of outputs cannot be treated in the same way, and thus the geometry alteration algorithm 

needs to include what type of problem detection output format it needs to operate. These are 

the strategies that were generated for geometry alteration: 

 

1. Voxel support: This alternative could be integrated directly into the voxel parsing 

problem detection process. Once an unsupported voxel is detected, then a supporting 

voxel is added underneath it (either directly beneath or diagonally).  

2. Hybrid: The model is initially searched for issues using the normal vector analysis 

approach. Once the model has been examined, it is voxelized. Then, a focused voxel 

support algorithm is run that only targets the problematic volumes of the model. The 

idea is to reduce the total processing time compared to the first entry in this list (voxel 

support algorithm) by first detecting any issues using the much faster normal vector 

analysis, rather than voxel parsing  

3. Vertex manipulation: This strategy aims to utilize the STL-format as much as possible 

to achieve minimum processing times. Since the STL-format contains all faces, normal-

vectors and vertices it should be possible to directly alter the positions of the vertices in 

order to correct any problematic overhang angles. Using normal vector analysis for 

problem detection should enable a vertex manipulation algorithm to directly identify 

which vertices should be targeted for manipulation. 

 

 

Figure 2. Comparison of strategies for detecting problematic geometries. A) voxel parsing, B) 

machine learning, C) normal vector analysis. 

To evaluate the different geometry alteration strategies a weighted Pugh matrix was utilized 

(see Table 1). During the evaluation the voxel support alternative is referred to as “VS”, the 

hybrid as “H” and vertex manipulation as “VM”. The criteria in the matrix are based on how 

well the different scripts solve the core problem, feasibility and usability. These evaluation 

criteria were selected based on key insights derived from the literature review and the 

interviews. Each criterion has its own weight, which represents how important it is. Each 

strategy is “scored” in each separate criterion with one out of three possible scores: -1 

(potentially subpar performance), 0 (unknown or potentially acceptable performance) and 1 

(potentially exceeding performance). 

In the next sections the strategies will be analysed in further detail with respect to the 

criteria used in the matrix. 

A) B) C) 



Criterion Weight (1-3) VS H VM 

Ability to solve core problem 

Eliminates problematic angles 3 1 1 1 

Minimum overhang angle is variable 2 0 1 1 

Maintains product functionality 3 0 0 0 

Usability 

Processing speed 2 -1 0 1 

Utilizes the STL-format as input and output 3 0 0 1 

Feasibility 

Complexity to construct 1 1 -1 -1 

Score 

Sum  1 1 3 

Weighted sum  2 4 9 

Table 1: Scoring of the different geometry alteration algorithms. 

Ability to solve the core problem 

Problematic overhang angles were the prime issue that needed to be solved, thus the high value 

of the corresponding criterions weight. At the time of conception these algorithms were all 

thought to possess the capacity to perform serviceable in this matter. And so, each algorithm 

received top marks. 

 The next criterion states that the minimum overhang angle should be variable. Here the 

Voxel Support alternative scored lower than the others as it is harder to handle adjustments to 

the minimum allowed overhang angle using the voxel parsing technique. The other algorithms 

both utilize normal vector analysis, which should handle angle adjustments without issues. 

 Equally as important as eliminating the problematic angles is the ability to maintain 

product functionality. However, it is impossible to make a blanket statement for any of the 

proposed alternatives regarding whether that algorithm will maintain product functionality. For 

this reason, all alternatives received no points in this requirement as it can only be judged on a 

case-by-case basis. 

Usability 

The first requirement in the category of usability treats processing speed. This category is 

important because a method that takes too long may be too disruptive to the workflow. Parsing 

through voxels is very time consuming, and thus the voxel support alternative scored the lowest. 

The hybrid comes next, as it too utilizes voxels but possibly in a more efficient manner.  

 The next category touches upon interoperability. Most CAD-software can import and 

export STL-files, which is a widely used format in the world of 3D-printing. Therefore, the 

algorithm should be able to import and export STL seamlessly to prevent complications to the 

existing designer workflow. Here the voxel parsing and hybrid algorithms scored lower than 

vertex manipulation, as they need to at some point convert STL to voxels and back again. This 

conversion of data structure may cause irredeemable loss of information. 

Feasibility 

Finally, the issue of complexity is addressed. Voxel parsing appeared to be the easiest 

alternative to implement. Therefor it scored the highest in this requirement. Vertex 

manipulation and the hybrid both received a lower score due to their high complexity and 

knowledge gaps, as it was not entirely clear at this point how these strategies would work. 

 Vertex manipulation aggregated the overall highest score and was thus selected for 

further development. Early tests with some of the least complex benchmarks suggested that 

there was some merit to this solution.  



3.3 Implementation of the selected automatic geometry alteration algorithm 

Figure 3. Diagram of the proposed automatic geometry alteration algorithm. 

In order to implement a comprehensive geometry altering algorithm using vertex manipulation 

it was decided that the algorithm should focus on one face at a time. That way, it would be 

easier to understand and debug. An algorithm was constructed (see Figure 3), that performs the 

following set of operations on each face that has been marked by the problem detection 

algorithm as having a problematic overhang angle: 

 

1. Gather all the vertices of the face and sort them by their respective Z-index (where Z is 

the printing direction). If they all have the same Z-index, then the overhang angle is 0°, 
in which case the algorithm stops and moves on to the next face. 

2. Flag the vertex with the highest Z-index value as the “anchor” vertex. The anchor vertex 

will function as the anchor point for this face and will remain stationary. If any of the 

other vertices share the same Z-index value, then it too will be flagged as an anchor. 

The remaining vertex (or vertices) will be flagged as “roaming” vertices, as these will 

be the vertices that move to adjust the angle of the face. 

3. For each roaming vertex calculate how far that vertex needs to move for the face to 

reach a desired minimum overhang angle. The movement that is allowed is strictly along 

the projection of the original normal vector onto the XY-plane. The reason the original 

normal vector is used to guide the movement is to attempt to maintain the model’s 

original shape. 

4. Store in memory how far and in which direction the roaming vertices needs to be pushed 

in order to satisfy the minimum overhang angle for this face. The algorithm has now 

completed its operations on this face and may move on to the next. 

 

Note that the vertices were never moved during this process. The algorithm merely calculated 

and stored how the vertices of each face is required to move to satisfy the minimum overhang 

condition. These changes are stored in vector-format in a stack. In the next step the geometry 

will be changed based on those stored instructions. 

 Another loop is initiated, which iterates over each vertex in the model. The loop 

calculates how each vertex should move individually based on the mean of all stored changes 

for that specific vertex, and then adds that change vector to the position vector of the vertex. 

Thus, the changes are in place. 

Once all the described operations have been performed, the problem detection algorithm is 

run again. A new set of faces will be acquired, which are processed through the same set of 

operations. This process is repeated until either the model stops changing, the problem detection 

algorithm no longer can find any issues, or the maximum amount of allowed iterations has been 
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Repeat until there are no problematic faces left, or until nothing has changed since the last iteration: 



reached (to prevent accidental infinite loops). In Figure 4 the results of this algorithm can be 

seen on one of the benchmark models. 

 

 

Figure 4. Geometry modification algorithm applied to a benchmark model seen in three 

stages: Before, in the middle of the process, and after. 

A variety of problems were encountered during the development of this method. Faces with an 

overhang angle of 0° could not be “fixed” using this method. This is because a face that has an 

overhang angle of 0° has a normal vector that is orthogonal to the substrate. Consequently, the 

normal vector is also parallel to the Z-axis, thus resulting in its projection onto the XY-plane 

being the zero-vector. Since the projection of the normal vector is used as guidance for pushing 

vertices then such faces remain untouched.  

Complex curved geometry sometimes resulted in issues where the shape was not 

preserved as intended. Since this method performs its calculations on one face at a time it does 

not account for if the movement of the roaming vertices will cause a collision with another face. 

This may result in invalid geometries that cannot be printed. 

4 Discussion 

The algorithm that was designed in this project works by pushing vertices away from the model, 

thus “inflating” it, to resolve problematic angles. This may be the wrong approach for the space 

industry since every gram need to be considered when launching products into space. Inflating 

the product would likely result in increased mass. It could be possible to reverse the algorithm, 

making it “subtractive” instead. Rather than pushing out the vertices with the lowest Z-index 

value it could pull the vertices with the highest Z-index. However, such a method might impose 

an elevated risk of creating invalid geometries unfit for print due to face collisions. A second 

possibility could be to combine these two approaches into a method that neither increases or 

decreases the mass by both pulling and pushing to decrease the overhang angles. 

 In its current state the software should not be relied upon to make intelligent decisions 

regarding a products geometry. However, it may be used as a guide to identify problems, and 

sometimes it might even help the designer by hinting at a possible “solution”. The software 

could of course be improved upon significantly, but any geometric alteration would likely 

always need the approval of a designer before going into production. 

5 Further development and future research 

There are numerous ideas that could be further explored, ranging from basic things such as 

optimizing performance, to implementing new features. In this section a few of those 

opportunities will be discussed.  

The problem with treating 0°-overhang could possibly be solved by exploring different 

strategies. Perhaps it would be helpful pausing the program to let the user make a choice about 

how to resolve such overhang issues, or possibly by scanning the geometry surrounding the 



overhang and make an “educated” alteration based on the geometric context. This area needs 

further research, as different situations calls for different solutions. The research effort yielded 

no generic solution for resolving 0°-overhang issues.  

 The user experience could also be vastly improved. In the final stages of the project a 

basic GUI was created to provide a means of interfacing with the script, but it lacked a proper 

3D-view of the object that was being manipulated. Such a view could be implemented and 

could be used to review the alterations. It could also be used to select “strict surfaces” that are 

not to be touched by support structures or alterations as was revealed during the interviews to 

possibly be a necessary feature. 

 A significant upgrade to the software would be to have it operate directly on CAD-files. 

CAD-files has the potential to contain a lot more information than regular STL-files. Thus, the 

software could make better and more informed alterations based on for example constraints that 

are stored in the CAD-file. This could be useful for providing a result that still fits the 

specifications that the model must meet, and for avoiding collisions. Additionally, if the output 

remained within the CAD-file format, then it would be significantly easier for a designer to edit 

the results of the geometric alterations. 

6 Conclusion 

Automatic geometry alteration works to some extent on low-complexity STL-models. In the 

attempts made during this project it turned out to be less useful on models of higher complexity 

with lots of curvature, and on models that has 0° overhangs. It proved hard to create an 

algorithm that could actively strive to preserve product functionality, but it is possible that this 

could be improved upon if a similar methodology were to be applied on CAD-files rather than 

STL-files, as CAD-files has the possibility to contain much more information such as 

constraints.  

 The usefulness of this kind of technology in the space industry is unclear. The software 

could provide guidance to designers and suggest possible alternatives to geometry that normally 

would not be convenient to print. However, the strategy of pushing vertices results in an 

increased final volume, which means that the altered product will have more mass. Thus, the 

current strategy employed by the geometry alteration algorithm might be a bad fit for the space 

industry. It could be interesting to explore a subtractive strategy, where instead of pushing 

vertices, they are pulled upon to reduce overhang, or possibly a combination in order to 

maintain mass. 

Source code 

The source code is available on Github using the following URL: 

https://github.com/johnmartins/am-geoalt  

 

The release (version) of the code that was used to produce the results seen in this paper is v0.1: 

https://github.com/johnmartins/am-geoalt/releases/tag/0.1  

The benchmark model used to produce the results seen in figure 4 can also be found as an 

attached asset for the v0.1 release. 
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